

Disclosure

- Book sales all pump companies
- Advisory Boards Companion Diabetes, Convatec, PicoLife Technologies
- Consultant Bayer, Roche, BD, Abbott, Tandem Diabetes,
 Acon Laboratories, Companion Diabetes
- Speakers Bureau Tandem Diabetes, Animas
- Sub-Investigator Glaxo Smith Kline, Animas, Lilly, Sanofi-Aventis, Bayer, Medtronic, Biodel, Dexcom, Novo Nordisk, Halozyme
- Pump Trainer Accu-Chek, Animas, Medtronic, Omnipod, Tandem
- Web Advertising Sanofi-Aventis, Sooil, Tandem Diabetes Medtronic, Animas, Accu-Chek, Abbott, etc.

Outline

- How to use CGM to troubleshoot control problems
- Troubleshooting the infusion set
- The Future
 - Better connectivity and analysis
 - Replace fingersticks
 - Control via the closed loop (or variations of)

In early 2014, we surveyed 502 US pumpers – 79% had experience (short or long) with a CGM and 59% currently wore one.

Topic Comparison

**Topic Compa

CGM Calibration Tips

- Use an accurate meter
- Use good technique clean fingers, no expired strips, enter reading right away
- Calibrate when CGM requests this and anytime that fingerstick varies from CGM reading (and consider whether to retest fingerstick)
- Do more calibrations on first day of use
- Calibrate at the extremes (when low and when high)

CGM Screen Information

- Glucose value updated every 5 min
- **Trend line** direction of glucose change
- **Trend arrow** rate of change (ROC)
- Alerts
 - High and low threshold
 - Predictive
 - Rate-of-change

Trends Arrows (mg/dL/hour)

Arrow	Dexcom	Medtronic
	Rise > 180 mg/dl/hour	Rise > 120 mg/dl/hour
1	Rise = 120 to 180	Rise = 60 to 120
7	Rise = 60 to 120	(n/a)
	< 60 rise or fall (stable)	(n/a)
1	Fall = 60 to 120	(n/a)
1	Fall = 120 to 180	Fall = 60 to 120
11	Fall > 180	Fall > 120

typeonenation

Where To Set Alerts

LOW: 80 mg/dl to start

Higher for young children and high risk jobs

HIGH: 200 mg/dL) based on current BGs

Gradually lower to 160 or 140 as control improves

The lower the high alert is, the earlier the wearer knows their BG is rising

Adapted from: Hirsch, et al. Clinical Application of Emerging Sensor Technologies in Diabetes Management: Consensus Guidelines for CGM. Diabetes Technology & Therapeutics, 10:4, 2008, 232-244.

Adjust Insulin for BG, Trend, & BOB*

- BG Stable: Usual Dose
- BG Rising Gradually:
 - ↑ bolus 10%
- BG Rising Sharply:
 - ↑↑ bolus 20% (140%)
- BG Dropping Gradually:
 - ◆ bolus 10%
- BG Dropping Sharply:
 - **↓** ⊎ bolus 20%

*BOB = bolus [insulin] on board

CGM Tips

- Wear the CGM at least 90% of the time and look at the monitor 10-20 times per day
- Look at trend lines not just individual BGs!
- Don't over-react avoid frequent corrections until pattern is clear
- A rapid rise usually means more insulin needed, BUT check BOB first!
- Lag times (usually 5-8 min) are longest after you treat a low glucose

Glucose Profile – No Diabetes

Glucose Profile – Poor Control

Comes in many variations!

Downloads Help Your Health Care Provider – So Bring Meaningful Data

"Pumping gas and brakes"

 Look for repeat patterns – correct patterns rather than reacting and making same mistake over and over again

Why People Don't Download

Takes 30 min or more to download data for doctor visit.

Thanks to Laddie at http://testguessandgo.com/tag/dexcom/

Jackson Pollack's CGM Tracing

Price: \$3,000,000

What CGM Information is Used?

Of 222 survey respondents with Type 1 diabetes:

- 51% rated trend line/trend arrow as most important
- 30% rated low and high glucose alerts as most important
- 15% thought real-time and download information were important
- Only 3.6% reported that finding patterns from downloads was helpful

40% never download and 17% report doing so only rarely

J Pettus, DA Price, SV Edelman. How patients with Type 1 diabetes translate continuous glucose monitoring data into diabetes management decisions. DOI: 10.4158/EP14520.OR © 2015 AACE.

CGM Data – Trends vs Downloads

RT Trendlines show:

- Last 1-24 hrs readings
- One night's basal profile
- Profile of one meal
- A limited picture

Downloaded data shows:

- Multiple days' readings
- Frequent highs
- Frequent lows
- Roller-coaster readings
- Post-meal spiking
- A complete picture

Adjust from Trendlines First 2 Days (Download)

Type 1 Chef (DM x 13 yr, c-peptide <0.5)

CGM as a Behavior Modification Tool

Adjust from Trendlines CGM Tracing – Following 2 Days

Honesty Improves Downloaded Data

Thanks to Laddie at http://testguessandgo.com/tag/dexcom/

Woman on Pump – 1st Visit

Woman on Pump – 1st Visit

Woman on Pump – 2nd Visit

How To Optimize Insulin

Optimize Insulin Doses In Sequence

- 1. Correct frequent lows first
- 2. Then correct high A1c/avg BG

This lets you find an ideal TDD (iTDD)

- 3. Set & test basals from iTDD Keep overnight readings level
- 4. Set & test CarbF from iTDD Fine-tune premeal BGs
- 5. Lower post meal BG's Bolus early, low GI foods, add Symlin, GLP-1 agonist, etc
- 6. Set & test CorrF from iTDD Brings highs down safely
- 7. Enjoy good control or return to #1

Brittle diabetes or frequent highs? Usually = the wrong pump settings

typeonenation

Incidence Rate* of SH at various ages

* the rate of seizure/coma in the DCCT was 26.7 /100 patient year T1D Exchange

Hidden Hypoglycemia

He/She ate when low but never tested with a meter.

Only a CGM sees this!

Nocturnal Hypoglycemic Seizures

Buckingham B. Diabetes Care 2008. 31:2110–2112

Stop Frequent Lows First

- You cannot tell how much excess insulin there is!
- Start with a 5% or 10% reduction in TDD
- Compare the current TDD to an "ideal" TDD for weight.
- Divide weight(lbs) by 4 to see what TDD would be used with an average sensitivity to insulin

Example: Someone who weighs 160 lbs would be expected to have a TDD of 40 units (160/4 = 40).

Example 1 – Frequent Lows on Meter

41 yo female with A1c = 6.9%

Example 2 – Frequent Lows on CGM

28 yo female – Wt: 120 lbs

Current TDD = 43.6 u/day

Wt/4 (120/4) = 30.0 u/day typeonenation

Then Stop Frequent Highs

Raise TDD:

by 1% to lower average BG by 6 mg/dL or by 5% to lower A1c by 1% Current BG – Target BG = % rise in TE

<u>Current BG – Target BG</u> = % rise in TDD

Example: Amy's avg TDD is 40 u/day, avg BG 200 mg/dL (few lows), and BG goal 140 mg/dL:

200 mg/dL - 140 mg/dL = 60 mg/dL 60 mg/dL \div 6 = 10% rise in TDD 40 units x 1.10 = 44 units a day

© 2015, Pumping Insulin, 6th ed.

Example 1 – Lower Highs from A1c

27 yo male, A1c = 8.6%, TDD = 50 u/day

 $8.6\% - 7.0\% = 1.6\% \times 5 =$ an 8% increase in TDD

 $50u \times 1.08 = 54u$

your HCP so they can help you interpret them yourself!

typeonenation

Example 2 – Lower Highs from Avg BG

53 yo female TDD = 36 u Avg BG = 191

- Raise basal by 0.05 u/hr all day (+1.2 u/day)
- Lower CarbF from 1u/13g to 1u/12g (+1.8 u/day)

TDD = 39 u 8.3% increase

T1 DM on the "Rollercoaster"

Type 1 Initial Visit – What's the Problem?

Type I DM A1C 9.0% - Avg BG = 176 (SD=66)

Type 1 After Pramlintide (Symlin)

Type I DM A1C 7.4% - Avg BG =176 (SD=66)

Recurrent DKA (A1c 9.5%)

Recurrent DKA – Reactive Bolusing

Total Insulin		19.5	5 32.10	28.1	0 25.30	19.8	5 35.25	24.70	26.15	20.90	22.75	26.20	25.10
Basal (U)	ICEO/OFFICE	35% 6.9	0 44% 14.1	50% 14.1	5 56% 14.10	65% 12.9	0 32% 11.15	42% 10.40	50% 13.05	67% 13.95	61% 13.90	53% 13.85	56% 13.95
Bolus (U)		65% 12.6	5 56% 17.9	50% 13.9	5 44% 11.20	35% 6.9	5 68% 24.10	58% 14.30	50% 13.10	33% 6.95	39% 8.85	47% 12.35	44% 11.15
# of Boluses	MERCHINA		5	3	8 6		3 7	4	4	5	7	11	5
Avg. Bolus (U)		2.5	3 100	1 1 7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 3	2 3 44	3 58	3 28	1.39	1 26	1 12	2.23
# Corr. Bolus		100%	5 78%	7 75%	6 83% 5	100%	3 86% 6	100% 4	100% 4	80% 4	100% 7	91% 10	60% 3
	1/6	1/7	1/8	1/9	1/10	1/11	1/12	1/13	1/14	1/15	1/16	1/17	1/1

72 yo Type 1 with A1c = 6.1%

Connectivity – the Next Big Wave

- Bluetooth LE allows connecting:
 - Pumps or smart insulin pens
 - Meters and CGMs
 - Cell phones
 - Activity monitors FitBit,
 JawBone, MotoActv, BodyMedia
- Integrate data from different device manufacturers
 - Tidepool, DiaSend, Share
- FDA is on board!

The Near Future

- Connectivity
 - Interoperability
 - Standard Display formats
- CGMs Replace Fingersticks
- Control
 - Assisted
 - Fully-closed loop

Dexcom BLE Share System

Next Step: Replace Fingersticks Sensors vs SMBG

TABLE 1: COMPARISON OF CGM, SMBG AND REFERENCE YSI MATCHED

Performance Parameters	CGM vs. YSI	SMBG vs. YSI
Temporally matched pairs (N)	2263	994
Pearson Correlation Coefficient	0.97	0.99
Mean Absolute Relative Difference (ARD) %	9.0%	5.6%
% 20/20	93.0%	98.8%
MARD within Day 1 Day 4 Day 7	10.7% 8.0% 8.5%	5.3% 4.9% 6.6%
Mean Absolute Difference (MAD), at Hypoglycemia BG <= 70 mg/dL	6.4 mg/dL	4.2 mg/dL
MARD at Euglycemia 70 < BG <= 180	9.7%	6.1%
MARD at Hyperglycemia BG > 180 mg/dL	8.0%	4.8%
Overall CEG A+B Zones A Zone	99.5% 92.4%	99.6% 98.5%
CG-EGA Zone Accurate Readings Hypoglycemia Euglycemia Hyperglycemia	95.6% 99.1% 99.2%	97.3% 99.7% 99.6%

89% of the CGM readings are ± 20% of YSI (or ±20 mg/dL for YSI ≤ 100 mg/dL)

Chang A, Nalamura K, Bailey TS, Christiansen M, Bhavaraju N, Price D. RT-CGM Performance Ready for Independent Diabetes Management Decisions. ADA 2014; abstract 840P.

typeonenation

Factory Calibration

- First step to fingerstick replacement
- Available today in E.U. without a prescription
 - Abbott Freestyle Libre (MARD 11.5%)

Troubleshooting the Infusion Set

Infusion Set Failure Is Common

- Most of the 16,849 adverse pump events reported to the FDA between 2006-2009¹ involved infusion sets¹
- A 2006 review of pumps in France likewise found that most serious adverse events involved infusion sets²
- Auto-insertion devices have a high failure rate of 8.9%³

<u>1 www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/MedicalDevices/MedicalDevicesAdvisoryCommittee/GeneralHospitalandPersonalUseDevicesPanel/UCM202779.pdf</u>

³ Renard E, et al: Lower rate of initial failures and reduced occurrence of adverse events with a new catheter model for continuous SQ insulin infusion. Diabetes Technol Ther 12:769-773, 2010.

² Maugendre D. Technical risks with subcutaneous insulin infusion. Diabetes Metab. 2006;32:279-284.

Infusion Sets – The Achilles Heel Of Pumps

Survey of 1142 pumpers in 40 German diabetes clinics

- 54% reported an increase in glycemia for unknown reasons until their infusion set is changed
- 19% reported kinking, 12% had leakage, 12% air bubbles, and 33% had other issues
- 36% used auto-insertion devices 72% of them reported that the device failed to work ~10% of the time

Reichert D, et al. Realität der Insulinpumpentherapie in Diabetesschwerpunktpraxen: Daten von 1142. Patienten aus 40 diabetologischen Schwerpunktpraxen. Diabetes, Stoffw. und Herz 22: 367-375, 2013.

Infusion Sets

External insulin pump

- Subcutaneous indwelling catheters
- Teflon cannula or steel needle
- Change Teflon every 3 days (3.4 d*) and steel every 2 days (3.7 d*)
- Pump and tubing may be disconnected without removing insertion site
 - * >500 self-reports of length of use in U.S.

Cannula Options

Line Disconnect Mechanisms

Motion and degree of manual dexterity required

Tubing lengths: 24", 32", and 43" for most sets

typeonenation

Auto-Inserters

Inset 30

Quick-Serter

Cleo

Accu-Chek Link Assist

Omnipod

Inset/Mio

Is The Infusion Set The Problem?

- Sites often "go bad"?
- Have "scarring" or "poor absorption"?
- Often have 2 or more unexplained highs in a row?
- Do correction boluses sometimes not work?
- High BGs until the set is changed?

Infusion Set Failure On CGM

Infusion Set Failure

Set problem started on afternoon of May 1st and lasted until late in the day on the 2nd when the infusion set was changed.

How Infusion Sets Fail

- Complete pullout
- Insulin leak along Teflon to skin
- Hematoma under the skin
- Autoinserter
- Occlusion
- Loose hub
- Punctured line

Stop Infusion Set Problems!!!

- Anchor the infusion line with 1" tape*
 - Stops tugs and pullouts, "unexplained highs" (insulin leaks), skin irritation and "pump bumps"
 No anchor!
- Insert set by hand
- Review site prep and insertion technique with clinician or trainer
- Switch to a reliable infusion set

^{*} Transpore, Durapore, Hypafix, Micropore

Data Tools and Standardized Data

Use Data Tools

- "On-board" information
- Pump Download software
 - Use with sensor and bG downloads
- Decision Support software

Ambulatory Glucose Profile for CGM Data

CapturAGP PDY Example - CGM Tests = 3285
25 Nov 2012 - 10 Dec 2012 (14.0 days)

Interna. Diab. Center

- Time in range
- Shaded modal day with median, IQ range, and 10/90% range
- Dashboard

Bergenstal et al: DT&T 2013

Freestyle Libre/Flash Glucose Patterns

Glucose Pattern Insights

FreeStyle Libre

13 September 2014 - 10 October 2014 (28 days)

LOW-GLUCOSE ALLOWANCE SETTING: Medium

MEDIAN GOAL SETTING: 8.6 mmol/L (A1c: 7.0% or 53 mmol/mol)

Estimated A1c 5.8% or 40 mmol/mol

Diabetes Management System

- Tracks glycemic outcomes
- Understands behaviors
- Informs health care provider

- Automated report
- Facilitates patient counseling
- Discloses educational deficits
- Recommends device settings

Review Data On The Device

TDD = 35.19 u

Basal % is low at 36%

2 grams of carb/day means Bolus Wizard is not being used

Connectivity

Get ready –the next big wave in diabetes devices and care!

Gadgets

- + Interfaces
- + Intelligence

Eventually, easier for everyone

Going Beyond Simple Pumps

- Show how a setting change affects the TDD (& BG)
- Temp basal PLUS bolus doses
- Super Bolus
- Meal-size boluses
- Alert for excess BOB (bolus without BG but BOB is ++)
- Low BG predictor (HypoManager)
- Exercise compensator (duration + intensity = gr of carb)
- Automated basal and bolus testing

Faster Insulins

- Diaport intraperitoneal delivery
- Faster insulin analogs
 - Novo Nordisk
 - Lilly
 - Biodel
 - MannKind Afrezza (inhaled)
- Micro-needles (1.5 mm)
- Oral insulin

Goal: fewer highs and fewer lows typeonenation

Implanted CGMs

- Months to years of use
- No disposables
- Minor surgery
 - Revenue model?

Sensionics

Implantable glucose sensor 0.5 x 0.5 x 5 mm

Regular 18-gauge hypodermal needle utilized for sensor implantation

Continuous monitoring and recording of glucose levels

GlySens

typeonenation

Artificial Pancreas Pathway

- Threshold Suspend
 - Reactive
 - Predictive
- Control to Range
- Control to Target
 - Insulin-only
 - Bi-hormonal

Life Is Better When You Know More!

PI5 on Kindle, i-Pad, and Nook – \$16.99

Slides at www.diabetesnet.com/diabetes-resources/diabetes-presentations

Books at www.diabetesnet.com/dmall/ or 800-988-4772

typeonenation