Insulin Pump Secrets & Settings for Great Glucose Control

John Walsh, PA, CDTC Saturday, March 7, 2015
Disclosure

- Book sales – all pump companies
- Advisory Boards – Companion Diabetes, Convatec, PicoLife Technologies
- Consultant – Bayer, Roche, BD, Abbott, Tandem Diabetes, Acon Laboratories, Companion Diabetes
- Speakers Bureau – Tandem Diabetes, Animas
- Sub-Investigator – Glaxo Smith Kline, Animas, Lilly, Sanofi-Aventis, Bayer, Medtronic, Biodel, Dexcom, Novo Nordisk, Halozyrne
- Pump Trainer – Accu-Chek, Animas, Medtronic, Omnipod, Tandem
- Web Advertising – Sanofi-Aventis, Sooil, Tandem Diabetes Medtronic, Animas, Accu-Chek, Abbott, etc.
Pump Lingo

- **TDD** – total daily dose (all basals and boluses) of insulin
- **Basal** – background insulin released around the clock
- **Bolus** – a quick release of insulin – Carb boluses cover carbs and Correction boluses lower high readings
- **Bolus Calculator (BC)** – calculates bolus recommendations
- **Correction Target** – the BG a correction bolus aims for
- **Duration of Insulin Action (DIA)** – how long a bolus lowers the BG – used to calculate residual BOB activity
- **Bolus On Board (BOB)** – bolus insulin still active from recent boluses (active insulin, insulin on board)
Outline

- Old and New Pumps & CGMs
- Pump Setup Tips
- Why the TDD Is So Important
- Which DIA Do You Use?
- BOB and Insulin Stacking
- Limitations of the Bolus Calculator
Advantages of an Insulin Pump

- Average A1c reduction = 0.2%\(^1\)
- Convenience
- Software calculates doses and tracks BOB
- Easier to match varying needs
- Less insulin stacking, less severe hypoglycemia, less BG variability \(^2\)
- Freedom of lifestyle
- Better data (clinicians, pumpers, parents)

20th Century Pumps
21st Century Line Pumps

Accu-Chek Aviva Combo
Animas Ping or Vibe
Medtronic Revel or 530G
Tandem t:slim
Asante Snap
21st Century Patch Pumps
Remote Control + Meter

- Integrated glucose meters improve bolus accuracy
- Give carb and correction boluses conveniently and discreetly (Omnipod remote must be present to bolus)
- Basal adjustments can be made with some remotes
- Smartphone connectivity will do the same
Advantages of a CGM

- Average A1c reduction = 0.7%\(^1\)
- Reads glucose every 5 min
- Gives alarms for lows and highs
- Security for wearer and family
- Trend line and arrows guide bolus doses
- Lower A1c, less severe hypoglycemia, less BG variability
- Better data (clinicians, pumpers, parents)

Cygnus Glucowatch (GW)

- First FDA approved real time device (2001)
 - MARD 24.5%
- Reverse iontophoresis
 - through intact skin
- Significant Limitations
 - Poor performance
 - 13h duration
 - high hassle factor
 - skin irritation
 - discomfort limited use
Current CGM’s

2014 Dexcom G4 Platinum (505)
MARD 9.0%, 1-2 week use

Medtronic Enlight
MARD 13.9%, 6-10 days use

Abbott Libre/Flash
MARD 11.4%, no cal,
2 weeks use, no alarms
<table>
<thead>
<tr>
<th>CGM:</th>
<th>Pump:</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dexcom</td>
<td>Animas</td>
<td>Now</td>
</tr>
<tr>
<td>Tandem</td>
<td>Tandem</td>
<td>2015?</td>
</tr>
<tr>
<td>Omnipod</td>
<td>Omnipod</td>
<td>2015?</td>
</tr>
<tr>
<td>Medtronic</td>
<td>Medtronic</td>
<td>Now</td>
</tr>
<tr>
<td>Accu-Check</td>
<td>Accu-Check</td>
<td>2016?</td>
</tr>
</tbody>
</table>

Connectivity via Bluetooth Low Energy 2015?
Dexcom G4 and G5 – Animas, Asante, Omnipod, Tandem

- High contrast color screens
- 1-2 week Dexcom G4 sensor
- Internet access via Diasend, t:connect, Tidepool, iHealth
- Share with Share App for iPhone and iPod
- Nightscout remote readings on Android
- Predictive glucose suspend in development
Dexcom G4AP vs Enlite Accuracy

Dexcom G4AP with 505 upgrade

- MARD = 9.0%\(^1\)
- For BGs < 70 mg/dL (3.9 mmol/L), MARD was 6.4 mg/dL
- 73% of sensors had MARD <10%
- 92.4% of readings were in Clarke error grid zone A

Enlite

- MARD = 13.6%\(^2\)

Pump Setup Tips
Bolus Calculator Settings

<table>
<thead>
<tr>
<th>This Setting</th>
<th>Helps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal rates</td>
<td>Sound sleep</td>
</tr>
<tr>
<td>CarbF or I:C ratio</td>
<td>Cover carbs well</td>
</tr>
<tr>
<td>CorrF or ISF</td>
<td>Lower highs safely</td>
</tr>
<tr>
<td>Target glucose</td>
<td>BG goal 4-5 hrs after bolus</td>
</tr>
<tr>
<td>DIA</td>
<td>Minimize insulin stacking</td>
</tr>
</tbody>
</table>

The average TDD determines how often highs and lows occur
Which Way Do You Adjust Settings?

<table>
<thead>
<tr>
<th>If you are having:</th>
<th>Basal Rates</th>
<th>Carb Factor</th>
<th>Corr Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequent lows</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Frequent highs</td>
<td>↑</td>
<td>↓</td>
<td>↓</td>
</tr>
</tbody>
</table>

Smaller factors = larger boluses
Pump Setup

- Educate
- **Determine TDD** (Total Daily Dose)
- Set Basals from TDD
- Set Bolus Factors from TDD
 - CarbF (carbohydrate factor)
 - CorrF (correction or “sensitivity” factor)
- Set target BG
- Set DIA (4.5 hrs or longer)
- Repeat when necessary
Glucose, Insulin and Carb Data

<table>
<thead>
<tr>
<th>Group:</th>
<th>All 396 Pumps</th>
<th>Low Third</th>
<th>Mid Third</th>
<th>High Third</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. Meter BG</td>
<td>184 mg/dL</td>
<td>144 mg/dL</td>
<td>181 mg/dL</td>
<td>227 mg/dL</td>
</tr>
<tr>
<td>BG Tests/Day</td>
<td>4.38</td>
<td>4.73</td>
<td>4.41</td>
<td>4.01</td>
</tr>
<tr>
<td>TDD</td>
<td>49.4</td>
<td>47.9</td>
<td>49.1</td>
<td>51.1</td>
</tr>
<tr>
<td>Basal %</td>
<td>47.6%</td>
<td>47.6%</td>
<td>47.2%</td>
<td>47.8%</td>
</tr>
<tr>
<td>CarbBolus U/d</td>
<td>20.4 u</td>
<td>20.9 u</td>
<td>20.4 u</td>
<td>19.8 u</td>
</tr>
<tr>
<td>CarbBolus/Day</td>
<td>4.14</td>
<td>4.07</td>
<td>4.20</td>
<td>4.14</td>
</tr>
<tr>
<td>CarbGram/Day</td>
<td>189.9</td>
<td>185.2</td>
<td>196.3</td>
<td>187.9</td>
</tr>
</tbody>
</table>

APP Study – Major Finding

- Find an accurate TDD first
- TDD is best guide to correct pump settings
- Start pattern management AFTER the TDD and settings are optimized

TDD controls frequency of lows and A1c/avg BG
Insulin Adjustments for Glucose Control

- If it ain’t broke, don’t fix it!

- **Mild** – tweak pump settings or lifestyle

- **Moderate** – For patterns, use pattern management. Otherwise calculate new TDD and retune pump settings

- **Severe** – Reset TDD to an improved TDD (iTDD) and select new settings from this iTDD to correct the problem
Use the TDD to Optimize Pump Settings1

Basal insulin = \~ Half of the TDD

\[
\text{CarbF} = 2.6 \times \frac{\text{Wt}(\text{lbs})}{\text{TDD}}
\]

\[
\text{CorrF} = \frac{1960}{\text{TDD}}
\]

CorrF is inversely related to TDD and to avg. BG

Poor control = need for a smaller CorrF

Or use the Pump Settings Tool at:

www.diabetesnet.com/diabetes_tools/pumpsettings/

1J Walsh, R Roberts, T Bailey: J Diab Science & Technology 2010, Vol 4, #5, Sept 2010
Use TDD to Optimize Pump Settings

9.5 Master List for Bolus Calculator Settings:
Find Your Basal Rates, CarbF, and CorrF from Your TDD (or iTDD) and Weight

<table>
<thead>
<tr>
<th>TDD or iTDD u/day</th>
<th>Basal 1 u/day</th>
<th>Basal 1 u/hr</th>
<th>Carb Factor 2 in grams/u</th>
<th>CorrF 3 (mg/dl) / u</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>7.7</td>
<td>0.32</td>
<td>16.3, 17.9, 19.5, 21.1, 22.8</td>
<td>122</td>
</tr>
<tr>
<td>20</td>
<td>9.6</td>
<td>0.40</td>
<td>13.0, 14.3, 15.6, 16.9, 18.2</td>
<td>98.0</td>
</tr>
<tr>
<td>24</td>
<td>11.5</td>
<td>0.48</td>
<td>10.8, 11.9, 13.0, 14.1, 15.2</td>
<td>81.7</td>
</tr>
<tr>
<td>28</td>
<td>13.4</td>
<td>0.56</td>
<td>9.3, 10.2, 11.1, 12.1, 13.0</td>
<td>70.0</td>
</tr>
<tr>
<td>32</td>
<td>15.4</td>
<td>0.64</td>
<td>8.1, 8.9, 9.8, 10.6, 11.4</td>
<td>61.3</td>
</tr>
<tr>
<td>36</td>
<td>17.3</td>
<td>0.72</td>
<td>7.2, 7.9, 8.7, 9.4, 10.1</td>
<td>54.4</td>
</tr>
<tr>
<td>40</td>
<td>19.2</td>
<td>0.80</td>
<td>6.5, 7.2, 7.8, 8.5, 9.1</td>
<td>49.0</td>
</tr>
<tr>
<td>45</td>
<td>21.6</td>
<td>0.90</td>
<td>5.8, 6.4, 6.9, 7.5, 8.1</td>
<td>43.6</td>
</tr>
<tr>
<td>50</td>
<td>24.0</td>
<td>1.00</td>
<td>5.2, 5.7, 6.2, 6.8, 7.3</td>
<td>39.2</td>
</tr>
<tr>
<td>55</td>
<td>26.4</td>
<td>1.10</td>
<td>4.7, 5.2, 5.7, 6.1, 6.6</td>
<td>35.6</td>
</tr>
<tr>
<td>60</td>
<td>28.8</td>
<td>1.20</td>
<td>4.3, 4.8, 5.2, 5.6, 6.1</td>
<td>32.7</td>
</tr>
<tr>
<td>65</td>
<td>31.2</td>
<td>1.30</td>
<td>4.0, 4.4, 4.8, 5.2, 5.6</td>
<td>30.2</td>
</tr>
<tr>
<td>70</td>
<td>33.6</td>
<td>1.40</td>
<td>3.7, 4.1, 4.5, 4.8, 5.2</td>
<td>28.0</td>
</tr>
<tr>
<td>80</td>
<td>38.4</td>
<td>1.60</td>
<td>3.3, 3.6, 3.9, 4.2, 4.6</td>
<td>24.5</td>
</tr>
<tr>
<td>90</td>
<td>43.2</td>
<td>1.80</td>
<td>2.9, 3.2, 3.5, 3.8, 4.0</td>
<td>21.8</td>
</tr>
<tr>
<td>100</td>
<td>48.0</td>
<td>2.00</td>
<td>2.6, 2.9, 3.1, 3.4, 3.6</td>
<td>19.6</td>
</tr>
</tbody>
</table>

1 Basal = TDD x 0.48
2 Carb Factor = 10.8 x insulin sensitivity = (2.6 x Wt (lb))/TDD
3 Correction Factor = 1960/TDD

For exact calculations, use the Pump Setting Tool at opensourcediabetes.org

© 2012 Diabetes Services, Inc

J Walsh and R Roberts: Pumping Insulin (5th ed), 2012
JD is a 20 yo college student DM1 referred to our clinic
A1c 8.4% (avg BG 194 mg/dL), Wt 184, TDD = 80 u (78-83 u/day)

- Basal: 1.8 u/hr (43.2 u/day)
- CarbF 10
- CorrF 45
- DIA 4 hrs
Use Decision Support Software

http://www.diabetesnet.com/diabetes_tools/pumpsettings/
From Decision Support Suggestions

- JD’s New Pump Settings:
 - Basal rate: 1.7 u/hr (originally 1.8 u/hr)
 - CarbF 5.6 (10)
 - CorrF 23 (45)
 - DIA 5 hrs (4)
- A1c 3 mos later 6.9% (8.4%)

opensourcediabetes.org
BGs & TDD Before & After Adjustment

Starting TDD = 36 u

- Raised basal by 0.05 u/hr all day (+1.2 u/day)
- Lowered carb factor from 1u/13g to 1u/12g (+1.8 u/day)

Ending TDD = 39 u
Common Pump User Issues

- Reactive vs proactive dosing (“The Rollercoaster”) *(Next talk)*
- Too many basal rates
- Inaccurate CHO bolus / CHO counting
- Delayed boluses – high post meal BG
- Infusion site failures *(Next talk)*
- Lack of meaningful monitoring data – no pump/meter/sensor downloads
- Lack of clarity for when to override BC recommendations *(Next talk)*
Basal Rates
Basal Tips – Avoid Over-Steering

• Basal rates are usually similar through day, such as between 0.5 to 0.8, or 1.0 to 1.5 u/hr

• Adjust basal rates in small steps (0.025 to 0.1 u/hr) **2 hours** before BG **starts** to rise or fall

• **Or 5-8 hours** before a high or low reading typically happens

• **Over 5 basals a day** probably has little benefit.¹

Optimal Number of Basal Rates?

Number of basal rates used per day from self-reports of hundreds of pumpers at insulin-pumpers.org

Once basal rate changes, it takes 3-5 hrs to have its full effect.*

Using more than 5 basals may have little benefit.

Check the Basals

<table>
<thead>
<tr>
<th>Program</th>
<th>Start</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00:00:00</td>
<td>0.250</td>
</tr>
<tr>
<td>2</td>
<td>04:30:00</td>
<td>0.550</td>
</tr>
<tr>
<td>3</td>
<td>08:00:00</td>
<td>0.300</td>
</tr>
<tr>
<td>4</td>
<td>13:30:00</td>
<td>0.150</td>
</tr>
<tr>
<td>5</td>
<td>17:30:00</td>
<td>0.475</td>
</tr>
<tr>
<td>6</td>
<td>22:00:00</td>
<td>0.300</td>
</tr>
</tbody>
</table>

Sum: 8.037 U
Overnight Basal Check

Block A (10:00 PM - 07:00 AM)

- Lower basal 2 to 3 hrs before BG drop begins
- BG drop starts here
- 70 mg/dl drop in 4 hrs

12 am 3 am 7 am
Ideal Basal/Bolus Balance Differs by Age

<table>
<thead>
<tr>
<th>Age</th>
<th>Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior to puberty</td>
<td>30-45%</td>
<td>High carbs, lower counter-regulatory hormones, honeymoon phase</td>
</tr>
<tr>
<td>Puberty</td>
<td>40-55%</td>
<td>High carbs, mid to high counter-regulatory hormones</td>
</tr>
<tr>
<td>Adult</td>
<td>45-60%</td>
<td>Mid carbs, mid counter-regulatory hormones</td>
</tr>
<tr>
<td>Thin elderly</td>
<td>40-50%</td>
<td>Mid carbs, lower counter-regulatory hormones</td>
</tr>
</tbody>
</table>
Temp Basal Rates

- Temp basals are great for physical activity, illness, fever, menses, testing new basals
- Don’t stop a pump for lows – provides no benefit until 60-90 min. later
- Never suspend. Instead, use a temp basal reduction – pump restarts on time, fewer followup highs
Carb Boluses
Carb Bolus Types

- **Regular**
 - Taken immediately – most meals

- **Combo / dual wave**
 - Some now, some later – bean burrito, some pastas and pizzas, Symlin

- **Extended / square wave**
 - Extended over time – gastroparesis

Don’t take combo/extended boluses without a clear reason.
Get More Accurate Carb Boluses

- Use carb counting resources
 - CalorieKing, MyFitnessPal
- Know portion sizes
 - Measure portions onto plate at home
- Base CarbF on TDD
 - CarbF = (2.6 x weight) / TDD
- Keep a record of doses that work!
Carb Factors Are Often Incorrect 1,2

CarbF settings found in pumps

CarbFs are not evenly distributed.

People prefer “magic” numbers – 5, 10, 15, and 20 g/unit.

Formulas provide accurate settings → better than WAG!

Don’t use “magic” numbers!

Stop Post Meal Spiking

- Count carbs carefully
- Bolus 15 to 30 min pre-meal
- Use combo bolus with picky eaters
- Delay eating until below 140 mg/dL
- Eat more low GI foods, complex carbs, fewer carbs
- Exercise after meals
- Use a Super Bolus
- Add fiber/psyllium/acarbose/Symlin/GLP-1 agonist
Clever Pump Trick – Bolus Early To Stop Meal Spikes

Figure shows Regular insulin injected 0, 30, or 60 min before a meal

Normal glucose profile shown in shaded area

Best glucose occurred with 60 minute bolus – but too risky to recommend!!!

Bolus 15-30 min early – the best-kept secret for better control

Clever Pump Trick –
Super Bolus – Shift Basal into Bolus

A Super Bolus shifts part of the next 2 to 3.5 hrs of basal insulin into the bolus with less risk of a low later.¹,²

Max carbs/meal = Wt(lb) X 0.36 to stay in control ²

Helps when eating more than ¼ of your weight(lbs) in grams i.e., more than 40 grs for someone weighing 160 lbs
Correction Boluses

- In the APP Study, 396 pumpers averaged 2.1 correction boluses and 5.6 correction units per day (11.6% of the TDD)
- Make up for deficits in basal rates or carb boluses
- The smaller the deficit (better BGs), the larger the CorrF becomes (smaller correction doses)

How Long Does a Bolus Lower the Glucose?
Duration Of Insulin Action
Accurate boluses require an accurate DIA
Insulin Action Time ≠ Duration of Action

Fig. 1 Insulin Action Time

- IAT is measured between points A and B, and involves suppression of basal delivery.

Fig. 2 Duration of Insulin Action

- DIA is measured between points C and D. Once basal delivery is maintained, the PD of a bolus insulin can be directly measured.

Bolus on Board / Insulin Stacking

Bedtime BG = 180 mg/dL – is there an insulin or a carb deficit?
Insulin Stacking Is Common

Of 201,538 boluses, 64.8% were given within 4.5 hrs of a previous bolus

J Walsh, D Wroblewski, T Bailey. Disparate Bolus on Board Recommendations in Insulin Pump Therapy. Poster 2007 AACE Meeting
Short DIA Times Hide BOB & Cause Lows

How much BOB a pump thinks is left 3 hours after a 10 unit bolus for these DIA times:

<table>
<thead>
<tr>
<th>If DIA is set to:</th>
<th>Pump’s estimate of Insulin On Board</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 hr</td>
</tr>
<tr>
<td>Estimated BOB is:</td>
<td>0 u</td>
</tr>
</tbody>
</table>
This lady (39 yo, CarbF 10) has two lows on Friday caused by insulin stacking from her short DIA time (3 hrs)
Another low happened on Saturday when excess BOB was not taken away from the carb bolus of 4.5 u.
Clever Pump Trick – How Many Carbs for a Low?

1. 1 gram for each 10 lbs of weight (minimum 10 gr)

2. Plus grams = BOB* x CarbF

Example: Amy’s BG = 52 mg/dL with 2u of BOB (CarbF = 8 g/u)

- At 140 lbs, she needs 14 grams of carb for the low glucose
- **Plus** 2u BOB x 8 gram/u = 16 grams to offset BOB
- Amy needs 14 g + 16 g = 30 grams for this low

* DIA time must be accurate
When Is Your Bolus Calculator Just Plain Wrong?
Tuning and Taming the Bolus Calculator

The BC should help the user find bolus recommendations that better match their carb intake and current glucose while minimizing insulin stacking.
Pump Bolus Calculators Often Recommend Excessive Boluses

<table>
<thead>
<tr>
<th>Glucose</th>
<th>Units Needed</th>
<th>Animas</th>
<th>Other Pumps</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1: 99 mg/dL</td>
<td>0 u</td>
<td>0 u</td>
<td>5 u</td>
</tr>
<tr>
<td>#2: 101 mg/dL</td>
<td>0 u</td>
<td>5 u</td>
<td>5 u</td>
</tr>
<tr>
<td>#3: 200 mg/dL</td>
<td>2 u</td>
<td>5 u</td>
<td>5 u</td>
</tr>
<tr>
<td>#4: 300 mg/dL</td>
<td>4 u</td>
<td>5 u</td>
<td>5 u</td>
</tr>
</tbody>
</table>

43 yo man eats 50 gram dessert 2 hrs after dinner with 5u of BOB on 4 consecutive nights. Each night’s BG is shown (column 1), the actual bolus he needs (col 2), and what pumps recommend (cols 3 and 4).

CarbF = 10 gr/u; CorrF = 50 mg/dL; Target = 100; DIA = 5 hrs
Extent of Insulin Overdose from a BC

Table: Bolus Recommendations Differ between Pumps

<table>
<thead>
<tr>
<th>Time</th>
<th>BG mg/dL</th>
<th>Carbs Eaten</th>
<th>Carb Bolus</th>
<th>Total IOB</th>
<th>Carb + Corr Bolus</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:54 am</td>
<td>111</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>No bolus given</td>
</tr>
<tr>
<td>9:52 am</td>
<td>174</td>
<td>0</td>
<td>3.0 u</td>
<td>0</td>
<td>4.3 u</td>
</tr>
<tr>
<td>10:35 am</td>
<td>140</td>
<td>50</td>
<td>5.0 u</td>
<td>3.3 u</td>
<td>2.2 u</td>
</tr>
<tr>
<td>11:58 am</td>
<td>117</td>
<td>40</td>
<td>4.0 u</td>
<td>3.6 u</td>
<td>0.5 u</td>
</tr>
<tr>
<td>1:12 pm</td>
<td>137</td>
<td>0</td>
<td>0</td>
<td>2.3 u</td>
<td>Eat 19 g</td>
</tr>
</tbody>
</table>

Observations

- **6.35 excess units recommended by other pumps in just 6 hours!**

TDD = 38 u, carb factor = 10 g/u, corr factor = 65 mg/dl, 65 mg/dL x 6.35 u = 413 mg/dl fall in BG if Other Pump’s advice is followed.
Check BC’s Recommended Bolus

Bolus on board (IOB) = glucose-lowering activity that remains from recent boluses

Pumps cover all carbs even when excess BOB is present

BOB of 4.35u is larger than correction bolus (1.23u), so consider reducing recommended bolus

Ping and Vibe give correct bolus once the BG is below target

4.35 u of BOB remain from a bolus given 3 hrs earlier – would you give 2.9 more units for a bedtime snack?
Case Study – Hypoglycemia From the BC

By omission:
Pump BC fails to warn user that they need carbs to cover their excessive BOB

33 yo woman, TDD ~36 units, CarbF 10, DIA 5 hours
Case Study – Hypoglycemia From the BC

By commission: Pump BC covers carbs with a full bolus even when excessive BOB is present

33 yo woman, TDD ~36 units, CarbF 10, DIA 5 hours
Clever Pump Trick – Get an Accurate Bolus

1. When BOB is smaller than correction bolus, the recommended pump bolus is CORRECT

2. If BOB is larger than correction bolus, add carb and correction bolus, then subtract BOB

Example: Carb bolus = 2.9 u (Pump’s recommendation)

\[
\begin{align*}
\text{Corr bolus} & = 1.2 \text{ u} \\
\text{BOB} & = 4.3 \text{ u} \\
\text{Accurate bolus} & = 2.9 + 1.2 - 4.3 = -0.1 \text{ unit bolus}
\end{align*}
\]
Get Off The Rollercoaster

Be proactive! Don’t overtreat highs and lows. Instead, adjust lifestyle or pump settings for great control!
Life Is Better When You Know More!

PI5 on Kindle, i-Pad, and Nook – $16.99

Slides at www.diabetesnet.com/diabetes-resources/diabetes-presentations
Books at www.diabetesnet.com/dmall/ or 800-988-4772