GLUCOSE CONTROL WITH TODAY'S INSULIN PUMPS & CGMS

May 10, 2015 3rd Annual Diabetes Type 1 Conference ANA Intercontinental Tokyo Sanofi

John Walsh, PA, CDTC Advanced Metabolic Care and Research Escondido, CA

Early Days: AutoSyringe As2c & As6c

Courtesy Lilly Museum

Courtesy www.phlex.org

Know The Bolus Calculator Settings

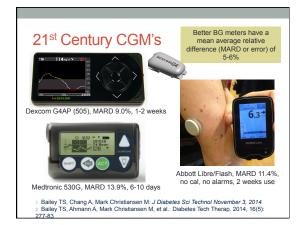
This Setting	Helps
TDD (total daily dose of insulin)	Best guide to initial pump settings – controls A1c, avg glucose, frequency of lows
Basal rates	For sound sleep and skipping meals
CarbF (I:C ratio)	Cover carbs well
CorrF (ISF)	Lower highs safely
Target glucose	BG goal 4-5 hrs after bolus
DIA	Minimize insulin stacking from BOB

Advantages of an Insulin Pump

Avg. A1c reduction = 0.2%^{1,2}

- Convenience = compliance
- Software calculates dose recommendations and tracks BOB

- $\,$ Reduces insulin stacking, severe hypoglycemia, and BG variability 3,4
- · Plus a freer and more varied lifestyle
- And better data (clinicians, pumpers, and parents)
- ¹ Hsin-Chieh Y, et al: Ann Intern Med. 2012;157(5):336-347.
 ² Carlsson BM, Attvall S, et al. Diabetes Technol Ther. 2013 Apr;15(4):302-7
 ³ Pickup JC, Sutton AJ: Diabet Med 2008 Jul;25(7):765-74.
- ³ Pickup JC, Sutton AJ: Diabet Med 2008 Jul;25(7):765-74.
 ⁴ Hirose M, Kawamura T, Hashimoto T, et al. J Japan Diab Soc. 2009 52(9),



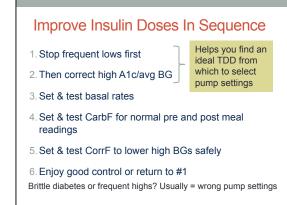
Advantages of a CGM

- Average A1c reduction = 0.3%¹
- · Reads glucose every 5 min
- · Alarms for lows and highs
- · Security for wearer and family
- · Trend line and arrows improve bolus doses
- Reduces A1c, severe hypoglycemia, and BG variability
- Better data (clinicians, pumpers, parents)

¹ Y Hsin-Chieh et al: Ann Intern Med. 2012;157(5):336-347.

Glucose, Insul	in and Carb E)ata	132 people in
Group:	Low BG Tertile	High BG Tertile	each tertile with
Avg. Meter BG	144 mg/dL	227 mg/dL	the lowest and highest glucose
BG Tests/Day	4.73	4.01	levels
TDD u/d	47.9 u	51.1 u	No significant
Basal %	47.6%	47.8%	difference was found in what
CarbBolus u/d	20.9 u	19.8 u	each group did
CarbBoluses/Day	4.07	4.14	to reach their average
CarbGrams/Day	185.2	187.9	glucose

Find the Optimal TDD First

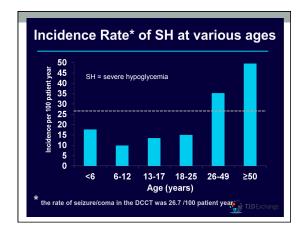

enough insulin

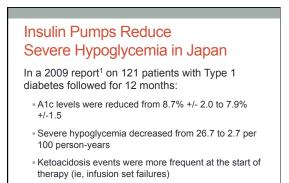
An accurate TDD is the

best guide to correct pump settings

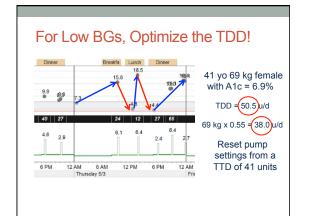
simpler once TDD and settings are optimized

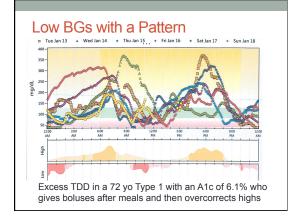
The TDD controls the frequency of lows, A1c, & avg BG

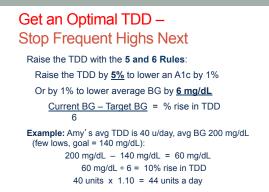


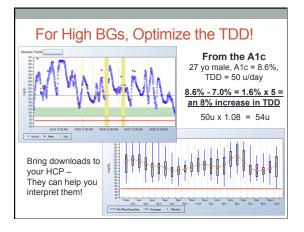

Get an Optimal TDD -Stop Frequent Lows First

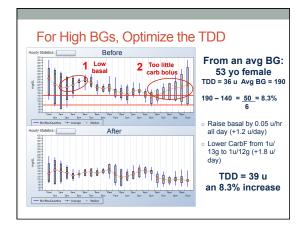
You cannot tell how much excess insulin there is!

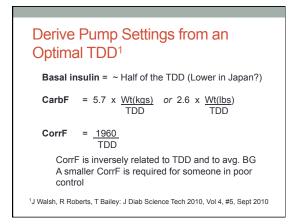

- Start with a 5% or 10% reduction in TDD
- Or multiply weight(kgs) by 0.55 for "ideal" TDD of someone with an average sensitivity to insulin^{1,2}
 - Example: Someone who weighs 73 kg (160 lbs) would be expected to have a TDD of 40 units (73 x 0.55 = 40).

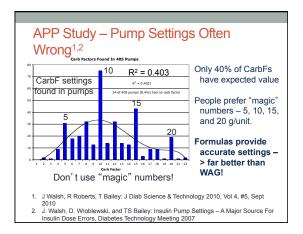

1. Davidson PC, Hebblewhite HR, Steed RD, Bode BW. Analysis of guidelines for basal-I. Dartussin P., Insubarini, E. M., Steel K. R., Bude M. K., Bude S. K., Bu



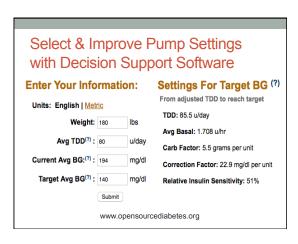

¹ Hirose M, Kawamura T, Hashimoto T, et al. J. Japan Diab Soc. 2009 52(9), 767-775

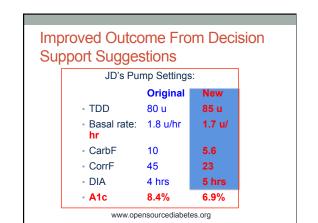






© 2013, Pumping Insulin





Use Decision Support Software to Select Pump Settings JD is a 20 yo DM1 college student referred to clinic. Wt 84 kg (180 lb), TDD = 80 u (78-83 u/day), avg BG = 194 mg/dL. Basal rate: 1.8 u/hr CarbF 10 CorrF 45 DIA 4 hrs A1c 8.4%

Which	Way	Do	You Adjust	Settings?
-------	-----	----	------------	-----------

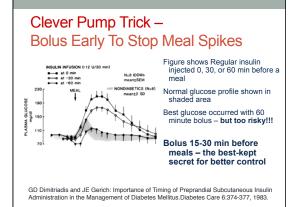
	This is the direction to change your:		
If you are having:	Basal Rates	Carb Factor	Corr Factor
Frequent lows	$\mathbf{+}$	1	1
Frequent highs	^	Ť	Ť

Smaller factors = larger boluses

APP Study -Doses that Successful Pumpers Use

Insulin Source	% of TDD	Interquartile Range (%)	Insulin usage in tertile of 132
Basal	47.8%	39.6% to 54.9%	pumps with the
Carb Boluses	43.1%	35.6% to 51.2%	lowest average
Corr Boluses	9.0%	6.2% to 11.3%	glucose

J. Walsh, R. Roberts, T. Bailey. Guidelines for Insulin Dosing in Continuous Subcutaneous Insulin Infusion Using New Formulas from a Retrospective Study of Individuals with Optimal Glucose Levels. J Diabetes Sci Technol, 4: 1174-1181, 2010.


Does Basal Percentage Differ in Japan?

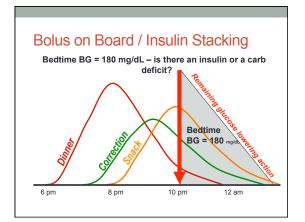
- · Average basal percentage of the TDD in most US/European studies is 48 to 52%, although individuals vary.
- In a hospital-based study of 35 Japanese Type 1 patients with an average age of 40, Dr. Kuroda et al found an average basal need of 27.7% +/- 6.9% (16.6% to 43.8%).
- · In a younger Japanese population with an average age of 16, Dr. Hashimoto found an average basal need of 35% with a strong association between basal requirements and dietary fat intake
- $\begin{array}{l} (p < 0.001, R^2 = 0.22). \\ \mbox{'kuroda} \ A, \ Kaneto \ H, \ Yasuda \ T, et al. \ Basal insulin requirement \ Is -30\% \ of the total daily insulin dose in type 1 diabetic patients, who use the insulin pump. Diab Care 34, \ May 2011, \ The transformation \ The transformati$ 1089-1090
- 1009-1090. ² Hashimoto T, Kawamura T, Kashihara Y, et al. Factors associated with basal insulin dose in Japanese children and young adult type 1 diabetics. J Diab Invest 3(3), 2012, 276-282

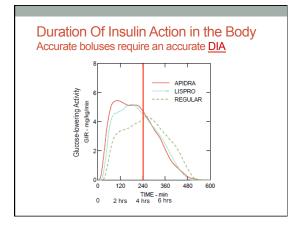
Basal Tips – Avoid Over-Steering

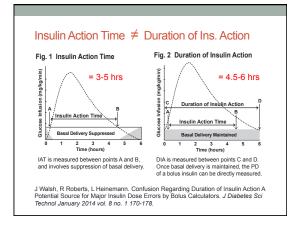
- · Basal rates usually remain similar through the day, such as between 0.75 to 1.0 u/hr
- · Adjust basal rates early
 - by 0.025 to 0.1 u/hr 2 hours before the glucose starts to rise or fall,

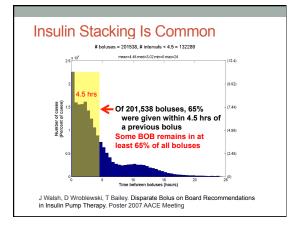
Clever Pump Trick -

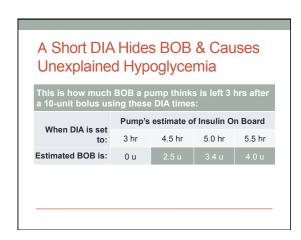
Get the Right Number of Carbs for a Low

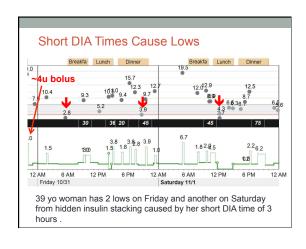

1. No BOB: 1 gram for each 4.5 kg (~10 lbs) of weight

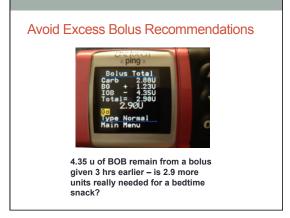

2. With BOB: Add grams = BOB* x CarbF


Example: Amy's BG = 52 mg/dL with 2u of BOB (CarbF = 10 g/ u)


- At 45 kgs (100 lbs), she needs 10 grams for the low glucose
- Plus 2u BOB x 8 gram/u = 16 grams to offset BOB
- Amy needs 10 g + 16 g = 26 grams for this low


* DIA time must be accurate





Infusion Set Failure Is Common

- Most of the 16,849 adverse pump events reported to the FDA between 2006-20091 involved infusion sets1
- · A 2006 review of pumps in France likewise found that most serious adverse events involved infusion sets²
- · Auto-insertion devices have a high failure rate of 8.9%³

Low Failure Infusion Setups

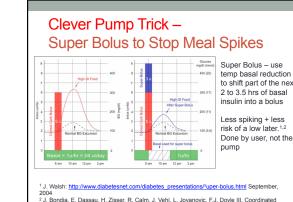
Ideal for small child, pregnancy, decreased dexterity, and normal

Place clear adhesive (IV3000, Tegaderm) on top of Sure-T/

Place 1" tape (Transpore, Durapore, etc) on infusion line of a

Teflon set to reduce site irritation and line tugs that cause

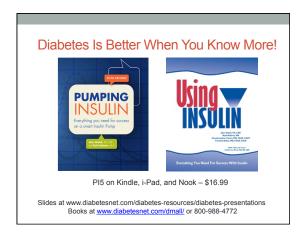
Contact Detach infusion sets


ct D

leaks

people:

 www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/ MedicalDevices/Medical Devices/AdvisoryCommittee/ GeneralHospitalandPersonalUSeDevicesPanel/UCM202779.pdf
 ² Maugendre D. Technical risks with subcutaneous insulin infusion. Diabetes Metab. 2006;32:279-284.
 ³ Renard E, et al: Lower rate of initial failures and reduced occurrence of adverse events with a peur cethodre resolution. Sci Devices for Adverse events with a new catheter model for continuous SQ insulin infusion. Diabetes Technol Ther 12:769-773, 2010.



to shift part of the next

Done by user, not the

