The Latest on Insulin Pumps and Glycemia

UCSD/VA Grand Rounds
San Diego, CA
February 12, 2014
John Walsh, PA, CDTC
www.billysbro.com
(619) 497-2062
Advanced Metabolic Care + Research
793 West B Norte Pkwy
Escondido, CA 92106
(760) 743-1411

View slides at www.diabetesnet.com/diabetes-resources/diabetes-presentations

Disclosure

- Book sales – all pump companies
- Advisory Boards – Tandem Diabetes, Convatec, Halozyme, PicoLife Technologies
- Consultant – Bayer, Roche, BD, Abbott, Tandem Diabetes, Acon Laboratories
- Speakers Bureau – Tandem Diabetes, Animas
- Sub-Investigator – Glaxo Smith Kline, Animas, Lilly, Sanofi-Aventis, Bayer, Medtronic, Bidel, Descom, Novo Nordisk, Halozyme
- Pump Trainer – Accu-Chek, Animas, Medtronic, Omnipod, Tandem
- Web Advertising – Sanofi-Aventis, Sooil, Tandem Diabetes
- Medtronic, Animas, Accu-Chek, Abbott, etc.

What We’ll Cover

- Pump Overview
- Actual Pump Practices Study Results
- Tuning the Bolus Calculator
- How to Find an Improved TDD
- Infusion Set Issues
- Future Developments

Insulin Pump Essentials

- Motor
- Reservoir/cartridge
- Basal rates & boluses
- Bolus calculator
- Infusion set
 - hub (Luer lock or proprietary)
 - tubing
 - cannula (metal or Teflon)
- Adhesive/tape

Advantages of an Insulin Pump

- Convenience
- Software calculates doses
- Easier to match varying needs
- Less insulin stacking
- Lower A1c, less severe hypoglycemia, less BG variability *
- More freedom of lifestyle
- Better data (clinicians, pumpers, parents)

Early Insulin Pumps

The Actual Pump Practices Study

In the APP Study, we looked retrospectively at over a thousand pump wearers across the U.S. Data was downloaded from Deltec Cozmo insulin pumps during a routine software upgrade in 2007. We wanted to find out:

- How pumps are actually used and
- What influences success

APP Study Background

- 396 pumps had >95% of BGs entered from an attached meter with >73 days of data and >300 BG tests per pump
- 92.7% of pumpers used BC to cover carbs (>2 meals a day) and 96.5% used BC to correct high readings
- Pumps were divided into tertiles by avg. BG
- Basal %, CarbF and CorrF formulas were derived from the tertile with the lowest avg. BG

APP Study – BGs, Basal Rates, and TDDs

<table>
<thead>
<tr>
<th>Glucose, Insulin and Carb Data</th>
<th>Group: All 396 Pumps</th>
<th>Low Third</th>
<th>Mid Third</th>
<th>High Third</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. Meter BG</td>
<td>184 mg/10.2 mmol</td>
<td>144 mg/dl (8.0)</td>
<td>181 mg/dl (10.0)</td>
<td>227 mg/dl (12.0)</td>
</tr>
<tr>
<td>BG Tests/Day</td>
<td>4.38</td>
<td>4.73</td>
<td>4.41</td>
<td>4.01</td>
</tr>
<tr>
<td>TDD</td>
<td>49.4</td>
<td>47.9</td>
<td>49.1</td>
<td>51.1</td>
</tr>
<tr>
<td>Basal %</td>
<td>47.6%</td>
<td>47.6%</td>
<td>47.2%</td>
<td>47.8%</td>
</tr>
</tbody>
</table>

APP Study – Carb Boluses and CarbFs

<table>
<thead>
<tr>
<th>Glucose, Insulin and Carb Data</th>
<th>Group: All 396 Pumps</th>
<th>Low Third</th>
<th>Mid Third</th>
<th>High Third</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. Meter BG</td>
<td>184 mg/10.2 mmol</td>
<td>144 mg/dl (8.0)</td>
<td>181 mg/dl (10.0)</td>
<td>227 mg/dl (12.0)</td>
</tr>
<tr>
<td>BG Tests/Day</td>
<td>4.38</td>
<td>4.73</td>
<td>4.41</td>
<td>4.01</td>
</tr>
<tr>
<td>CarbBolus/Day</td>
<td>4.14</td>
<td>4.07</td>
<td>4.20</td>
<td>4.14</td>
</tr>
<tr>
<td>CarbGram/Day</td>
<td>189.9</td>
<td>185.2</td>
<td>196.3</td>
<td>187.9</td>
</tr>
<tr>
<td>CarbF</td>
<td>11.4</td>
<td>10.8</td>
<td>12.2</td>
<td>11.2</td>
</tr>
</tbody>
</table>

APP Study – Unexpected Outcomes

Between low, medium, and high avg. BG groups:
- Basal was 48% of TDD in all groups
- Groups ate same grams of carb and took same number of carb boluses and correction boluses per day
- BG testing had no meaningful impact on glucose – the high BG group tested almost as often as low group
- High BG group used MORE insulin a day – they either need more insulin OR need to stop losing it

APP Study – Summary

- Get an accurate TDD
- Then derive pump settings from it

Pattern management becomes easier once TDD is accurate.

APP Study – Summary

- Get an accurate TDD
- Then derive pump settings from it

Pattern management becomes easier once TDD is accurate.

Tuning the Bolus Calculator

The BC helps user find bolus recommendations that better match carb intake and the current glucose while minimizing insulin stacking.

Bolus Calculator

User Inputs: Glucose
Grams of carb

BC Output: Recommended bolus with list of units for carbs, correction (if needed), and BOB (if any)

Bolus Calculator Settings

<table>
<thead>
<tr>
<th>This Setting</th>
<th>Helps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal rates</td>
<td>Sound sleep (~50% of TDD)</td>
</tr>
<tr>
<td>CarbF or I:C ratio</td>
<td>Cover carbs well</td>
</tr>
<tr>
<td>CorrF or ISF</td>
<td>Lower highs safely</td>
</tr>
<tr>
<td>Target glucose</td>
<td>Correct to specific goal</td>
</tr>
<tr>
<td>DIA</td>
<td>Minimize insulin stacking</td>
</tr>
</tbody>
</table>

The average TDD determines how often highs and lows occur

APP Study – Carb Factors Are Often Wrong

Carb factors are not evenly distributed.
People like “magic” numbers – 5, 10, 15, and 20 g/unit.
Use formulas to get accurate settings much better than WAG!

Don’t use “magic” numbers!
Basal Tips

- Basal rates should be similar, such as between 0.5 to 0.7, or between 1.0 to 1.4 u/hr
- Adjust basal rates in small steps (usually 0.025 to 0.1 u/hr) 2 to 5 hours before need arises
- Using more than 5 basals may have little benefit.

Basal/Bolus Balance

<table>
<thead>
<tr>
<th>Ideal Basal/Bolus Balance Differs by Age</th>
<th>Prior to puberty</th>
<th>Puberty</th>
<th>Adult</th>
<th>Thin elderly</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30-45%</td>
<td>40-55%</td>
<td>45-60%</td>
<td>40-50%</td>
</tr>
<tr>
<td></td>
<td>High carbs, low stress, honeymoon</td>
<td>High carbs, mid to high stress hormones</td>
<td>Mid carbs, mid stress hormones</td>
<td>Mid carbs, low stress hormones</td>
</tr>
</tbody>
</table>

Basal/Bolus Balance

- TDD = 35.19 u
- Basal % is low at 36%
- 2 grams of carb/day means Bolus Wizard is not being used

Pump Data – Avg. TDD and Basal/Bolus Balance

Pump BCs Can Recommend Excessive Bolus Doses

<table>
<thead>
<tr>
<th>Recommended Bolus from BC</th>
<th>Glucose</th>
<th>Units Needed</th>
<th>Animas</th>
<th>Other Pumps</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1: 119 mg/dl</td>
<td>0 u</td>
<td>0 u</td>
<td>5 u</td>
<td></td>
</tr>
<tr>
<td>#2: 121 mg/dl</td>
<td>0 u</td>
<td>5 u</td>
<td>5 u</td>
<td></td>
</tr>
<tr>
<td>#3: 200 mg/dl</td>
<td>2 u</td>
<td>5 u</td>
<td>5 u</td>
<td></td>
</tr>
<tr>
<td>#4: 300 mg/dl</td>
<td>4 u</td>
<td>5 u</td>
<td>5 u</td>
<td></td>
</tr>
</tbody>
</table>

A pump wearer eats 50 gram dessert 2 hrs after dinner with Su of BOB left on 4 consecutive nights. Table shows BG on each night, the actual bolus needed and what pumps will recommend.

CarbF = 10 gr/u; ConF = 50 mg/dl; Target = 120; DIA = 5 hrs

Verify Bolus Recommendations

- Bolus on board (BOB) = glucose-lowering activity that remains from recent boluses
- All pumps* cover carbs even when excess BOB is present
- When BOB exceeds correction bolus, consider reducing recommended bolus.

If 4.35 u of BOB remain from a bolus given 3 hrs earlier, would you really give 2.9 more units for a bedtime snack?

* Asante Snap has option to avoid this, and Animas Ping gives correct bolus once BG goes below target.
Clever Pump Trick – Get an Accurate Bolus

1. If BOB is SMALLER than the correction bolus, pump’s recommended bolus is CORRECT
2. If BOB is LARGER than the correction bolus, subtract BOB from the combined carb plus correction bolus

Example:
- Carb bolus = 3.0 u (Pumps recommend 3.0 u)
- Corr bolus = 1.2 u
- BOB = 4.0 u \(\text{BOB larger than Corr bolus} \)

Accurate bolus = 3.0 + 1.2 – 4.0 = 0.2 units as needed bolus

Insulin Action is not Duration of Action

- 3-5 hrs
- 4.5-6 hrs

Short DIAs Cause Unexplained Hypos

3 hours after a 10 unit bolus, table shows how much BOB a pump thinks is left with each DIA time:

<table>
<thead>
<tr>
<th>Pump's estimate of Insulin On Board</th>
<th>If DIA is set to:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 hr</td>
</tr>
<tr>
<td>Estimated BOB is:</td>
<td>0 u</td>
</tr>
</tbody>
</table>

- A short DIA hides BOB and leads to hidden insulin stacking, unexplained lows, and errors in other pump settings.
- Always set DIA from insulin’s “real action time”
- Don’t change DIA to “fix” control problems

“Dead-In-Bed” CGM data

Fig. 1: Insulin Action Time
Fig. 2: Duration of Insulin Action

Recommended DIA Times

Set DIA to 4.5 to 6 hrs for accurate calculation of BOB and bolus doses

Stop Frequent Lows First

- You cannot tell how much excess insulin there is!
- Start with a 5% or 10% reduction in the TDD
- Compare the current TDD to an “ideal” TDD for weight.
 - Divide weight(lbs) by 4 to find an expected TDD if their sensitivity to insulin were average.

Example: Someone who weighs 160 lbs would be expected to have a TDD of 40 units (160/4 = 40).
Example – Frequent Lows

41 yo female with A1c = 6.9%
TDD = 50.5 u/d
152 lb/4 = 38.0 u/d

Then Stop Frequent Highs

When the average BG is high with few lows:
Raise TDD by 1% for each 6 mg/dl (or for each 0.2% in A1c) you want to lower the glucose

Example: Amy’s avg TDD is 40 u/day. Her average meter BG is 205 mg/dl with few lows. Her BG goal (average) is 145 mg/dl:
205 mg/dl – 145 mg/dl = 60 mg/dl
60 mg/dl ÷ 6 mg/dl = 10% rise needed in TDD
40 units x 1.10 = 44 units

Example – Frequent Highs

TDD = 50 u, A1c = 8.6%
8.6% - 7.0% = 1.6% x 5 = 8% increase in TDD
50u x 1.08 = 54u

TDD Before & After Adjustment

Start TDD = 36 u
Raised basal by 0.05 u/hr all day (+1.2 u/day)
Lowered carb factor from 1u/13g to 1u/12g (+1.8 u/day)
End TDD = 39 u

Verify the TDD

- Compare TDD to wt(lbs)/4 [or (kgs)/1.8]
- Check frequency and severity of lows
- Contrast TDD with A1c & avg. BG on meter
- Decide if TDD should change

APP Study – Use TDD to Determine Initial Settings

- **Basal** = ~ 48% of TDD (0.02 x TDD = avg. U/hr)
- **CarbF** = 2.6 x Wt(lbs) / TDD
- **Corr. Factor** = 1960/TDD (mg/dl) (1500 to 2400)
 CorrF is inversely related to TDD and to avg. BG – Poor control = need for larger correction doses

 Or use Pump Settings Tool to compare current to “ideal” settings at www.diabetesnet.com/diabetes_tools/pumpsettings/

Jerry’s Starting Pump Settings

TDD = 50 u Weight = 180 lbs A1c = 7.0% DIA = 5 hrs
Basal = 50 u x 0.02 = 1.0 u/hr
CarbF = 2.6 x 180 lbs = 9.4 grams/unit
CorrF = 1960/50 = 39 mg/dl per unit

Actual/Expected TDD Measures & Person’s Relative Insulin Resistance (RIR)

1. Avg. insulin dose in 2 large studies of well-controlled pump patients was 0.24 U/lb (0.53 U/kg) and 0.245 U/lb (0.54 U/kg).
2. Expected TDD = Wt(lb) x 0.24 U/lb (or Wt(lb)/4)
3. Actual TDD = an average of their total daily doses (>14 days)
4. An insulin-dependent individual’s relative insulin resistance is:
 \[RIR = \frac{Actual\ TDD}{0.24\ U/lb\ \times\ Wt(lb)} \]
 (or better, use the person’s ideal TDD)

Consider Meds When RIR is High

Type 1s become Type 2s and Type 2s become Type 1s
– when insulin resistance is > 1, consider adding GLP-1 agonists or an oral agent:
 - GLP-1 agonist
 - Metformin
 - Glitazone

Clever Pump Trick – How Many Carbs Are Needed for a Low?

1. 10 grams for each 80 lbs of weight
2. Plus grams = the current BOB x CarbF

Example: At 9 pm, Amy’s BG is 52 mg/dl and she has 2u of BOB
 - At 160 lbs, she needs 20 grams of carb
 - 2 units of BOB with a CarbF of 8 gr/u = 16 grams
 - For this low, Amy needs 20 g + 16 g = 36 grams

Infusion Set Issues

- Little research has been done
- Clinician and wearer reports and blogs suggest infusion set issues are widespread
- Set leaks and failures create random hyperglycemia, making their source difficult to identify
- A major source for calls to pump companies and for pump discontinuation
- Less than 10% of pumps returned for problems have any defect

Infusion Set Failure is Common

- Most of the 16,849 adverse pump events reported to the FDA between 2006-2009 involved infusion sets.
- A 2006 review of pumps in France likewise found that most serious adverse events involved infusion sets.
- Auto-insertion devices have a high failure rate of 8.9%.
- In a survey of 1142 pumpers in 40 German diabetes clinics, 36% used auto-insertion devices and 72% reported that the device failed to work ~10% of the time, and 54% reported high BGs for unknown reasons until their infusion set was changed.

Infusion Set Auto-Inserters

- Inset 30
- Accu-Chek Link Assist
- Inset/Mio
- Quick-Serter
- Cleo
- Spring
- Omnipod

Reasons that Infusion Sets Fail

- Complete pullout
- Insulin leak along Teflon to skin
- Hematoma (pool of blood)
- Occlusion
- Cannula kink
- Loose hub
- Punctured line

ALL should rarely or never happen

APP Study – Average BGs Before & After Set Change

396 pumps with ~20 infusion set changes per pump.

Graph shows change in avg. BG over each 6 hr interval before and after infusion set is changed.

Does Pumper have an Infusion Set Problem?

- Do infusion sites often “go bad”?
- Is there “scarring” or “poor absorption”?
- Often have 2 or more unexplained highs in a row?
- Do correction boluses sometimes not work?
- Have high BGs (often 6-32 hrs) until set is changed?

Solutions for Infusion Set Problems

- Anchor the infusion line with tape
- Review site prep and insertion technique with clinician or trainer
- Insert set by hand
- Switch to a different brand of infusion set

Tapes: Transpore, Micropore, Durapore, Hypafix

Future Developments
Artificial Pancreas Pathway

T O D A Y

- OPEN-LOOP (Patient confirmation)
 - Insulin pump + glucose sensor + bolus wizard
- SEMI-CLOSED LOOP (Semi-automated system)
 - Iterative:
 - Threshold suspend
 - Predictive suspend
 - Overnight closed-loop
- CLOSED-LOOP (Fully-automated system)
 - Free-living trials have started
 - Dual hormones?
 - Meal-handling
 - Announce?
 - Assist?

Early Closed Loop – Medtronic 530G

- Low Glucose Suspend (LGS) – CGM can suspend basal up to 2 hrs for a low.
- May reduce length of night lows.
- 6 day Enlite sensor
- Wearability and excess CGM alarms are an issue for some

Threshold Suspend lasting at least 2 hours

Mean ± SD of sensor glucose values surrounding 2-hour TS events. The dotted line is at 70 mg/dL.

Bergenstal R. et al ADA 2013

Future CGM Advances

- Factory calibration
- Abbott Flash -14 day, no cal
- Intermittent CGM at test strip pricing
- Dual sensors on one CGM set
 - 2 glucose oxidase
 - 1 glucose oxidase and 1 fluorescent
- Multi CGMs on one cannula
 - 6-8 sensors on insulin cannula (15% BG drop)

Accu-Chek and Omnipod CGMs

Accu-Check CGM has 4 distinct sensor areas on the sensor wire

- Mean ARD is ~9.2%, compared to ~10.7% for upcoming Dexcom Gen4 algorithm and 13.9% for Enlite

Omnipod is developing its own CGM system*

Accu-Chek Insight Pump

Accu-Chek Insight Pump

One independent artificial pancreas study found a MARD of 10.8% for current Dexcom G4, 12.3% for Abbott Navigator, and 17.9% for MinMed Enlite.*

1. E. Zachowski et al, JDDT Vol 7(4), July 2013
2. E. Keenan et al, DTY Vol 14(3) 2012

Implanted CGMs

- Months to years of use
- No disposables
- Minor surgery
- Funded as rental?

MicroCHIPS Illume

Sensionics

Biorasis Glucowizzard

GlySens
Implanted Fluorescent CGM

Molecules fluoresce & change color as glucose rises or falls
- Small size, low power, low cost, long life, good accuracy, minimal lag time

From Y. J. Heo et al: Institute of Industrial Science at the University of Tokyo

Faster Insulin

For better matching of carbs (< 2 hrs) with insulin (5 hrs)
- Ultra-fast insulin analogs
 - Novo Nordisk FIAsp
 - Biodel
 - MannKind Afrezza (inhaled)
- Diaport intraperitoneal delivery
- Micro-needle intradermal delivery
- Hyaluronidase
- Warming of infusion site

Goal: fewer highs and lows

Advantage of Accu-Chek Diaport or Oral Insulin

Delivery into the abdominal cavity speeds up insulin action with more insulin going directly to the liver. Oral insulin would be absorbed directly into the portal vein.
Faster in and faster out = less hypoglycemia

BD Intradermal Microneedle

- 1.5 mm intradermal needle speeds up insulin action
- Painless
- Reliable attachment of set will be critical

Future Pump Features

- How setting change impacts TDD (& BG)
- Temp basal plus bolus doses
- Super Bolus
- Meal-size boluses
- Excess BOB alert (bolus without BG but BOB is ++)
- Low BG predictor (HypoManager)
- Exercise compensator
- Infusion set monitor/leak detector
- Automated basal and bolus testing

Life Is Easier When You Know More!

PI5 on Kindle, i-Pad, and Nook – $16.99
slides at www.diabetes.net/diabetes-resources/diabetes-presentations
Books at www.diabetes.net/dmal/ or 800-988-4772