CLINICAL BENEFITS OF CGM

Whittier Institute of Diabetes
San Diego, May 3, 2016

John Walsh, PA, CDTC
Advanced Metabolic Care and Research
San Diego, CA
jwalsh@diabetesnet.com

Outline

• Current CGMs
• Who Wears a CGM?
• Clinical Benefits from CGMs
• 5 Paths to Better Readings
• Better Readings from Real Time CGM
• CGM Downloads Help Find Patterns
• CGM Tips

The Competition

Glucose Trend

Glucose trend for person without diabetes

CGM Advantages

• Average A1c reduction = 0.3%
• Reads glucose every 5 min
• Alarms when low and high
• Security for wearer and family
• Glucose value, trend line and arrows guide bolus doses, carb intake, and exercise
• Lower A1c, less severe hypoglycemia, less BG variability
• Better data (clinicians, pumpers, parents)

21st Century CGM’s

Dexcom G4AP (505), MARD 9.0%, 1-2 weeks

Medtronic S30G, MARD 13.9%, 6-10 days

Better BG meters have a mean average relative difference (MARD or error) of 5-6%

Abbott Libre/Flash, MARD 11.4%, no cal, no alarms, 2 weeks use

Infusion Line Pumps

Tandem t:slim G4

Animas Vibe

Accu-Chek Insight

Medtronic Veo

Patch Pumps

Insulet Omnipod

Calibra Finesse

Valeritas V-Go

Intervention Data Found on the Pump – Avg. TDD, Basal/Bolus Balance, and Carbs

TDD = 35.19 u

Basal% is low at 36%

2 grams of carb/day means bolus calculator is not used – helps determine practice/compliance

Pens and injections do not show this!

Advantages of a Pump/CGM

- Glucose, insulin, and carb count data is collected in one location
- Pump shows BOB along with glucose and trend line
- Helps both left brain “intuitive dosers” and right brain “analysts”

Benefit of Pump and CGM

Who Wears a CGM?

- Alerts for lows and highs
- Avoiding frequent hypos & hypo unawareness
- Seeing effect of specific foods and exercise
- A child too young to report a low glucose
- Tight control before and during pregnancy
- Security during sleep or when living alone
- Frequent driving, travel, high-risk professions
- Real time info and data downloads
- Sharing glucose data with others

© 2016 Pumping Insulin; 6th ed
2.2 Reasons Significant Others Like a CGM:
- Peace of mind
- Alerts that signal lows and highs
- Better glucose management
- Avoiding frequent hypos & hypo unawareness
- Security while sleeping or living alone
- Safer driving and travel
- Knowing when a young child is or will go low
- The security of knowing another’s glucose at a distance

Why Isn't Everyone on a CGM?
- The seeming invulnerability of adolescence
- Single and dating
- Concepts of beauty or body image
- Marks one as having a chronic disease
- Hot, wet, or contact sports or employment
- Swimming, surfing, wrestling, air conditioner repair, plumbing, roofing
- Expense
- Technophobes, not wanting a device attached
- Desire to avoid “bad” news

Clinical Benefits from CGMs
- Delayed boluses – high post meal BG
- Inaccurate CHO bolus / CHO counting
- Bolusing just before or after eating
- Excessive insulin stacking
- Too many basal rates (over and understeering)
- Insufficient monitoring data – no pump/meter/sensor downloads
- Reactive pumping (pumping gas and brakes)
- Infusion site failure

Do Pumps and CGMs Improve Control?
- AHRQ compared pumps to MDI and found:
 - Moderate evidence for lowering the A1c by 0.05% to 0.20% (4 studies)
- Low evidence for benefit in hypoglycemia, weight, or QOL
- Insufficient evidence for hyperglycemia benefit
- And when comparing CGM to BGM, they found:
 - Low evidence for any benefit

APP Study – Pump Settings Often Wrong1,2

Only 40% of CarbFs have expected value
People prefer “magic” numbers – 5, 10, 15, and 20 g/unit.
Formulas provide accurate settings \textgreater\ far better than WAG!

5 Paths to Better Readings
1) Optimize the average TDD and derive pump settings from it
2) Change pump settings from basal and bolus testing.
3) Adjust pump settings from glucose patterns.
4) Increase time in target range with real-time CGM micro-carbing and micro-bolusing.
5) Monitor basal/carb bolus balance.

5 Paths to Better Readings
1) Optimize the average TDD and derive pump settings from it
2) Change pump settings from basal and bolus testing.
3) Adjust pump settings from glucose patterns.
4) Increase time in target range with real-time CGM micro-carbing and micro-bolusing.
5) Monitor basal/carb bolus balance.

CGMs Help Determine Solutions
Pattern management works here
No patterns here! Reduce TDD s
Select new settings. Emphasize carb counting and pre-meal bolusing.
Inquire about set failures (red oval)

CGMs Help Find an Optimal TDD
Most people do not get enough insulin
Some get too much
Find an accurate TDD first – \textbf{your best guide to good pump settings}
Pattern management is simpler after TDD and settings are optimized

CGMs Help Stop Frequent Lows
You cannot tell how much excess insulin there is!
\begin{itemize}
\item Start with a 5\% or 10\% reduction in TDD
\item Or compare current TDD to an “ideal” TDD for weight.
\item Multiply weight(kgs) by 0.55 (lbs x 0.24) for TDD of someone with an average sensitivity to insulin1,2
\end{itemize}
\textbf{Example:} Someone who weighs 73 kg (160 lbs) would be expected to have a TDD of 40 units (73 x 0.55 = 40).

Excess Lows? – Lower the TDD!
\begin{itemize}
\item 2 Lows-to-Highs per day
\item 3.9 mmol/L 70 mg/dl
\end{itemize}

28 yo female – Wt: 55 kgs (120 lbs)
Current TDD = 43.8 u/day
Wt 55 kg x 0.55 = 30.0 u/day
Low BGs with a Pattern in 71 yo Type 1

Pumping gas and brakes. Boluses after meals, then overcorrects → lower TDD, reselect settings, always bolus before eating.

A "great A1c" of 6.1%

BG drop starts here

Lower basal here 2-3 hrs before BG begins to drop

70 mg/dl decline in 4 hrs

CGMs Help Check Basal Rates

CGMs Help Stop Frequent Highs

When avg BG on CGM is high with few lows, use the 5-1-6 Rule:

Know How Much Insulin is Needed – Raise the TDD by

• 5% for each 1% reduction desired in the A1c
• 1% for each 6 mg/dL (0.3 mmol/L) reduction desired in avg BG

Example: Amy’s avg TDD is 40 u/day, avg BG is 217 mg/dL (12 mmol/L) with few lows, and her goal is 145 mg/dL (8 mmol/L):

217 mg/dL – 145 mg/dL = 72 mg/dL
72 mg/dL / 6 = 12% rise needed in TDD
40 units x 1.12 = 44.8 units

© 2012, Pumping Insulin, 5th ed

High BGs? – Optimize the TDD!

From the A1c
27 yo male, A1c = 8.6%, TDD = 50 u/day
8.6% - 7.0% = 1.6% x 5 = an 8% increase in TDD
50u x 1.08 = 54u

High BGs? – Optimize the TDD

From an avg BG:
53 yo female TDD = 36 u
Avg BG = 190 mg/dL (10.6)
190 – 140 = 50/6 = 8.3%

• Raise basal by 0.05 u/hr all day (+1.2 u/day)
• Lower Carbf from 1u/13g to 1u/12g (+1.8 u/day)

TDD = 39 u an 8.3% increase

Use New TDD to Select Pump Settings

<table>
<thead>
<tr>
<th>Basal insulin</th>
<th>~ half of the TDD (TDD x 0.02 = u/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CarbF</td>
<td>2.6 x Wt(lbs) or 5.7 x Wt(kgs) / TDD</td>
</tr>
<tr>
<td>Corrf</td>
<td>2000 mg/dl or 110 mmol/L / TDD</td>
</tr>
</tbody>
</table>

Use 1450 to 1600 (80 or 90 mmol) for high A1c (large basal/carb bolus deficits) and 2200 or 2400 (120 or 130 mmol) when most glucose readings are in target.

The CorrF is Inversely Related to the A1c

<table>
<thead>
<tr>
<th>CorrF Formula</th>
<th>mg/dL</th>
<th>mmol/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>>10%</td>
<td>CorrF = 1450/TDD</td>
<td>CorrF = 80/TDD</td>
</tr>
<tr>
<td>8% to 10%</td>
<td>1500 to 1700/TDD</td>
<td>83 to 94/TDD</td>
</tr>
<tr>
<td>7% to 8%</td>
<td>1800 to 1900/TDD</td>
<td>100 to 106/TDD</td>
</tr>
<tr>
<td>6.6% to 7%</td>
<td>2000 to 2100/TDD</td>
<td>111 to 117/TDD</td>
</tr>
<tr>
<td>< 6.6%</td>
<td>2200 to 2400/TDD</td>
<td>122 to 133/TDD</td>
</tr>
</tbody>
</table>

Case Study of Decision Support Software

JD is a 20 yo DM1 college student referred to clinic. Wt 180 lb (84 kg), TDD = 80 u (78-83 u/day), avg BG = 194 mg/dL (10.8 mmol/L).

- Basal rate: 1.8 u/hr
- CarbF: 10 gr
- CorrF: 45 mg/dL (2.5 mmol/L)
- DIA: 4 hrs
- A1c: 8.4%

Select & Improve Pump Settings with Decision Support Software

Enter Your information:
- Units: English / Metric
- Weight: 84 kg
- Avg TDD: 80 u/day
- Current Avg BG: 194 mg/dL
- Target Avg BG: 140 mg/dL
- Submit

Settings For Target BG
- From adjusted TDD to reach target
- TDD: 85.5 u/day
- Avg Basal: 1.73 u/hr
- Carb Factor: 5.6 grams per unit
- Correction Factor: 2.29 mg/dL per unit
- Relative Insulin Sensitivity: 51%

Improved Outcome From Decision Support Suggestions

JD’s Pump Settings:
- Original: TDD 80 u, Basal rate: 1.8 u/hr, CarbF: 10 u/50 gr, CorrF: 45 mg/dL, DIA: 4 hrs, A1c: 8.4%
- New: TDD 85 u, Basal rate: 1.7 u/hr, CarbF: 5.6 u/50 gr, CorrF: 24 mg/dL, DIA: 5 hrs, A1c: 6.9%

www.opensourcediabetes.org

Don’t Make Bolus Decisions from the CGM

- During at least the initial 2 weeks of use
- When a CGM reading is more than 20 to 30 mg/dL (1.1 to 1.7 mmol/L) different from the meter reading
- When skips or gaps occur in glucose readings
- When the glucose is rapidly changing
- During times of change in diet, stress, or exercise

Using the CGM to make bolus decisions is not FDA approved. Approved in Europe and under review here.

Better Readings from Real Time CGM
CGM Data
Real Time Screen vs Download

RT Trend Lines show:
- Last 1-24 hrs readings
- One night’s basal profile
- Profile of 1-2 meals
- A limited picture for immediate solutions
- Harder to see patterns

Download Data shows:
- Many days readings
- Frequent highs, frequent lows
- Postmeal spiking
- A complete picture for comprehensive solutions
- Easier to see patterns

CGM Real Time Screen Information

- Glucose value – updated every 5 min
- Trend line – direction of glucose change
- Trend arrow – rate of change: one arrow = 3.3 to 6.7 mmol/L, two arrows = 6.7 to 10 mmol/L
- Alerts
 - High and low thresholds
 - Prediction
 - Rate of change
- BOB – on pumps

The risk of a glucose depends on its trend.

CGM Real Time –

79 mg/dL (4.4 mmol/L) with down arrow and trend line

79 mg/dL with down arrow and BOB – Screen showing BOB is more helpful!!!
Down arrow + BOB = caution

CGM Real Time –

243 mg/dL (13.5 mmol/L) with 2 up arrows (>120 or 180 mg/dL per hour) and trend line

High target at 220 mg/dL (12.5 mmol/L) gives LATE notice* for high readings!

* CGM Bad Practice #1

Adjustment from CGM Arrows

- Recommended dose adjustments from DirectNet and JDRF compared with actual dose adjustments from survey of 222 pump wearers in right column
- Wide variation in individual adjustments

Real Time Trends And Predictions

- Great for:
 - Security
 - Driving, sports, etc.
 - Basal and bolus testing
 - Overriding bolus recommendations
- Helps increase time “between the lines”
- Do not set alarms high – ACT on the alarms
- Turn alarm fatigue into better readings and fewer alarms
Real Time Basal & Bolus Testing on CGM

- Start with a clear-out period
- No bolus in the last 5 hours
- No food in the last 3 hours
- Record/graph what happens – no history without this!
- Basal test – trend line should stay flat or go down no more than 20 mg/dL over the next 6 hours.
- Carb factor test – give bolus 20 min before eating and eat carbs = half your weight in lbs. Be at target 4-5 hrs later with no lows.
- Correction factor test – take correction bolus and be at target 4-5 hrs later with no lows.

Use CGM Alerts to Increase In-Target Time
More time in target from micro-carbing and micro-bolusing

Adjusting from Trend Line
Type 1 Chef (DM x 13 yr, C-peptide <0.5)

A Chef’s First 2 Days on CGM
Chef’s Tracing on Following 2 Days

Use of the CGM’s Real Time screen can modify behavior!!!

Dexcom Clarity Evaluation

<table>
<thead>
<tr>
<th>Time</th>
<th>Value</th>
<th>Percent</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 AM</td>
<td>5.8 mg/dL</td>
<td>5.8%</td>
<td>Low Alert</td>
</tr>
<tr>
<td>12 PM</td>
<td>121 mg/dL</td>
<td>12.1%</td>
<td>High Alert</td>
</tr>
<tr>
<td>2 PM</td>
<td>2.8 mg/dL</td>
<td>2.8%</td>
<td>Low Alert</td>
</tr>
</tbody>
</table>

14 day average shows very good control 121 mg/dL (6.7 mmol/L)
72% in range
Low risk for hypoglycemia.
Some excess highs between 3 am and noon, possibly caused by lows at midnight.

Ambulatory Glucose Profile Standard

- Here, avg BG of 169 hides excessive variability (CV of 53.2%, ie 90/169)
- 9.4% of readings (2.2 hours a day) are less than 50 mg/dL (2.8 mmol/L) – No need for this many lows!
- Select a lower TDD, derive new pump settings, from it and retrain carb counting
How Do Patients Use CGMs?

Of 222 survey respondents with Type 1 diabetes:

- 51% rated trend line/trend arrow as most important
- 30% rated low and high glucose alerts as most important
- 15% thought real-time and download information were important
- Only 3.6% reported that finding patterns from downloads was helpful

```
40% never download, 17% do so only rarely
```


CGM User Experience

- Abbott Navigator 12 week study of 90 Type 1s, 56% female, avg. age 42 (18-64), T1 duration 23 yrs, 73% on pump.
- Study included CGM Training
 - 94% strongly felt they needed a CGM, 99% felt it would let them know if a BG is rising or falling (100% agreed with this after study)
 - 98% completed the study
 - 72% used the CGM for more than 75 of the 90 days
 - Subjects found 1 min glucose readings, high and low alarms, and trend arrows were most helpful
 - Hypoglycemia decreased from 1.3 to 1.0 episodes per day
 - A1c < 7.0% increased from 38% to 54%

```
```

CGM Downloads Identify Glucose Patterns

A) most common pattern (raise afternoon & evening basal, lower supper CarbF), B) frequent lows (lower TDD by 5-10% & find new settings), C) high and flat most of the time (raise basal rates), D) frequent highs with post-meal rise (raise basal rates and lower CarbF/ICR), E) highs or lows at particular times of the day (raise or lower prior basal rate or CarbF in previous meal), F) post-meal spiking (bolus earlier, lower CarbF), G) over-correction of highs (do not increase recommended bolus, raise the CorrF/ISF, set DIA to 4.5 hrs or longer), H) over-treatment of lows (stop lows, don’t overtreat). Several patterns often coexist. Adjust basals or boluses most responsible.

```
```

A – Most Common Glucose Pattern

Best readings during the day, higher after dinner into the night – raise afternoon and evening basal, lower CarbF for supper

B – Frequent Lows

Infusion set failure?

Lower TDD at least 10% and get new pump settings from it
B – Dexcom Studio - Lows

Avg BG 114 mg/dL (6.3 mmol/L) – 17% low

C – Consistent Highs

Raise TDD primarily with higher basal rates

F – Postmeal Highs

Bolus earlier, check basal/carb bolus balance and lower the CarbF

G – Overtreatment of Highs

This person overtreated a high glucose of ~270 mg/dL (15 mmol/L) and dropped to 35 mg/dL (2 mmol/L) only 3.5 hrs later. Intentional excess? CorrF too low? Short DIA? Fortunately, they did NOT overtreat the low!

Pump Bolus Calculators Can Recommend Larger Boluses Than Needed

<table>
<thead>
<tr>
<th>Glucose</th>
<th>Actual Units Needed</th>
<th>Animas</th>
<th>Other Pumps</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1: 99 mg/dL</td>
<td>0 u</td>
<td>0 u</td>
<td>5 u</td>
</tr>
<tr>
<td>#2: 101 mg/dL</td>
<td>0 u</td>
<td>5 u</td>
<td>5 u</td>
</tr>
<tr>
<td>#3: 200 mg/dL</td>
<td>2 u</td>
<td>5 u</td>
<td>5 u</td>
</tr>
<tr>
<td>#4: 300 mg/dL</td>
<td>4 u</td>
<td>5 u</td>
<td>5 u</td>
</tr>
</tbody>
</table>

CGMs Help Spot Infusion Set Failure

Anytime there are 2 unexplained high glucose readings in a row that do not come down with correction boluses:

Give an injection by syringe and change infusion set
CGMs Help Spot Infusion Set Failure

Infusion set problem started on afternoon of May 1st and lasted through the 2nd when the infusion set was changed.

Glucose Distribution and Pie Charts

Lows

Highs

<table>
<thead>
<tr>
<th>Pre-Bkfst</th>
<th>Post-Bkfst</th>
<th>Pre-Lunch</th>
<th>Post-Lunch</th>
<th>Pre-Dinner</th>
<th>Post-Dinner</th>
</tr>
</thead>
<tbody>
<tr>
<td>115 Readings</td>
<td>205 Readings</td>
<td>137 Readings</td>
<td>226 Readings</td>
<td>218 Readings</td>
<td>235 Readings</td>
</tr>
</tbody>
</table>

CGM Tips

- **Wear** the CGM at least 6 days a week
- **Look at the monitor** 10-20 times per day
- **View trend lines not just individual BGs**!
- A rapid rise usually means more insulin needed, BUT check BOB first – avoid frequent corrections until pattern is clear
- Lag times (normally 5-8 min) are longest after treating a low glucose – don’t overtreat lows

CGM Calibration Tips

- **Use a VERY** accurate meter
- Use clean fingers and no expired strips
- Enter reading right away
- Do more calibrations on first day of use and when readings vary
- Calibrate up to 4 times a day preferably while the glucose is flat (no arrows) with a low BG and again with a high BG
- Calibrate before bed to improve accuracy and avoid nighttime calibration alert
- Replace sensor if readings do not improve after 2 calibrations

Diabetes Is Better When You Know More!

P15 on Kindle, i-Pad, and Nook – $16.99

Slides at www.diabetesnet.com/diabetes-resources/diabetes-presentations

Books at www.diabetesnet.com/dmall/ or 800-988-4772

PI5 on Kindle, i-Pad, and Nook – $16.99