

Where T	o Set The Alerts				
LOW:	80 mg/dl				
	Less than 90 – only for pregnancy				
HIGH:	240 mg/dL to start				
	Then gradually lower to 180 or less				
	Higher: young children, high risk jobs				
	Lower: as alerts tolerated to get earlier alert for rising BG				
Hi/Low	v thresholds are <u>not</u> BG target ranges				
	Clinical Application of Emerging Sensor Technologies in Diabetes Management: CGM. Diabetes Technology & Therapeutics, 10:4, 2008, 232-244.				

_	
P	Pump Setting Formulas*
	Basal = ~ 48% of TDD
	CarbF = 2.6 x <u>Wt(lbs)</u> TDD
	Carb factor is directly related to insulin sensitivity = average carb factor times individual's insulin sensitivity
	Corr. Factor = 1960 / TDD
	Correction factor is inversely related to TDD and also inversely related to avg. BG
	*J Walsh, R Roberts, T Bailey: J Diab Science & Technology 2010, Vol 4, #5, Sept 2010

Pu	mp	Se	ettin	as	T	ah	le						
	····Ρ	00		90		ub							
8. Estir	nates of	Basal,		nd Co	rrF B:	asal o	n TDD	and V	٧t				
	Basal	Basal	CorrF ²		_		Carb Fa	ctor ² in	grams/	u			
TDD	u/day	u/hr	(mg/dl) / u	100 lbs	110 lbs		130 lbs		150 lbs 68.0 kg		170 lbs	180 lbs	
16	7.7	0.32	122	16.3	17.9	19.5	21.1	22.8	00.0 1g	12.0 18	77.1 %	01.0 1.8	
20	9.6	0.40	98.0	13.0	14.3	15.6	16.9	18.2	19.5	20.8			
24	11.5	0.48	81.7	10.8	11.9	13.0	14.1	15.2	16.3	17.3	19.5	21.7	
28	13.4	0.56	70.0	9.3	10.2	IL.I	12.1	13.0	13.9	14.9	16.7	18.6	
32	15.4	0.64	61.3	8.1	8.9	9.8	10.6	11.4	12.2	13.0	14.6	16.3	
36	17.3	0.72	54.4	7.2	7.9	8.7	9.4	10.1	10.8	11.6	13.0	14.4	
40	19.2	0.80	49.0	6.5	7.2	7.8	8.5	9.1	9.8	10.4	11.7	13.0	
45	21.6	0.90	43.6	5.8	6.4	6.9	7.5	8.1	8.7	9.2	10.4	11.6	
50	24.0	1.00	39.2	5.2	5.7	6.2	6.8	7.3	7.8	8.3	9.4	10.4	
55	26.4	1.10	35.6	4.7	5.2	5.7	6.1	6.6	7.1	7.6	8.5	9.5	
60	28.8	1.20	32.7	4.3	4.8	5.2	5.6	6.1	6.5	6.9	7.8	8.7	
65	31.2	1.30	30.2	4.0	4.4	4.8	5.2	5.6	6.0	6.4	7.2	8.0	
70	33.6	1.40	28.0	3.7	4.1	4.5	4.8	5.2	5.6	5.9	6.7	7.4	
80	38.4	1.60	24.5	3.3	3.6	3.9	4.2	4.6	4.9	5.2	5.9	6.5	
90	43.2	1.80	21.8	2.9	3.2	3.5	3.8	4.0	4.3	4.6	5.2	5.8	
100	48.0	2.00	19.6	2.6	2.9	3.1	3.4	3.6	3.9	4.2	4.7	5.2	

low Pumps	s Hand	lle BOE	3	
What's In th	ne BOB & V	Vhat Is It Ap	plied Agai	nst?
		cludes Of Bolus		otracted From le Of Bolus
	Carb	Correction	Carb	Correction
Injections	No	No	No	No
Animas Ping	Yes	Yes	No*	Yes
Deltec Cozmo	Yes	Yes	Yes	Yes
Insulet Omnipod	No	Yes	No**	Yes
Medtronic Revel	Yes	Yes	No	Yes

Situation	Steps To Take
Frequent lows	Lower TDD by 5% or more
Highs and Lows (lows come first)	Lower TDD, check for short DIA
Highs and Lows (highs come first)	Check for settings that don't "fit the TDD", raise CorrF number
Mostly high	Raise TDD from table or formula
Occ. Unexplained highs	Change infusion set technique or infusion set brand, watch for association with particular food or stress, or ?

BG Tertile	Low	Middle	High
Avg BG	146.6	181.6	229.3
BGs/day	4.74	4.52	4.22
Blocks/ month	1 36	3.04	3.57

