

nsulin Dose – I	How Much?
consider weight, age, and lifestyle	level of insulin resistance,
Starting dose (adu	lts):
Starting dose:	0.5-1.0 units/kg/day
Average dose	0.8-1.2 u/kg
Starting dose (child	dren):
Starting pre-pube	rty 0.2-1.0 u/kg
Average dose	0.5-1.0 u/kg
Starting puberty	0.3-1.2 u/kg
	0.9.1.5.11/1/2

insuii	TDose – How Much?
Determi	ne glucose target range
Start wi	h small dose based on weight
Gradua insul	ly learn to adjust both rapid and long in doses from glucose readings
Individu	alize
Realize due f	that gradual increase in doses is normal o gradual loss of beta cells

egin Self-Management Right Away					
	Rapid Ins	ulin Adjustments			
	Current Units	Lows at next meal	Highs at next meal		
	< 10u / meal	- 1u	+ 1u		
	11-19u / meal	- 2u	+ 2u		
	> 20u / meal	- 3u	+ 3u		
	Long Acting	Insulin Adjustme	nts		
Avg FBG	Add	Every	Till Below		
> 180 mg/dl	+ 4u	3 days	180 mg/dl x 2 days		
> 140 mg/dl	+ 2 u	3 days	140 mg/dl x 2 days		
> 90 mg/dl	+ 1u	3 days	90 mg/dl x 2 days		

. Find an optimal TDD	
. Set and test basal rate	es/doses
. Set and test carb bolu	ses/doses
. Set and test correction	n boluses/doses
. Enjoy good control, or	return to #1

	,			
10.4 Start	ing Basal Ra	te And Corre	ection Factor	
Find your sta to find your	irting TDD in th starting hourly b	e first column. T asal rate and co	hen look across that row rection factor.	
Starting TDD	Total Basal Per Day	Avgerage Basal Rate ¹	Correction Factor ² Iu lowers BG	Basal ~50% of IDD
18 units	9 units	0.38 u/hr	111 mg/dl (6.1 mmol)	Corr. Factor = 2000/TDD
22 units	II units	0.46 u/hr	91 mg/dl (5.0 mmol)	
26 units	13 units	0.54 u/hr	77 mg/dl (4.2 mmol)	
30 units	15 units	0.63 u/hr	67 mg/dl (3.7 mmol)	
35 units	18 units	0.75 u/hr	56 mg/dl (3.1 mmol)	*The better the control,
40 units	20 units	0.83 u/hr	50 mg/dl (2.8 mmol)	
45 units	23 units	0.96 u/hr	45 mg/dl (2.4 mmol)	the higher the correction factor
S0 units	25 units	1.04 u/hr	38 mg/dl (2.2 mmol)	
60 units	30 units	1.25 u/hr	33 mg/dl (1.8 mmol)	
70 units	35 units	1.46 u/hr	29 mg/dl (1.5 mmol)	
80 units	40 units	1.67 u/hr	25 mg/dl (1.3 mmol)	
90 units	45 units	1.88 u/hr	22 mg/dl (1.2 mmol)	
100 units	50 units	2.08 u/hr	20 mg/dl (1.1 mmol)	

_	-) (Jou	,	54	00.	7.10	,		21110
11.3 Adj	ust Your If	Basal Ra	ites Fron	n Your Ba	asal Test	f your gluc	ose rises		
mg/dl (mmol)	-100 (5.5)	-80 (-6.1)	-60 (-3.3)	-40 (-2.2)	+40 (+2.2)	+60 (+3.3)	+80 (+6.1)	+100 (+5.5)	
and your TDD is:	Lowe	r your basa	l by a TOTA	AL of	Raise	your basal	by a TOTAL	of	Those boost adi
20 u	-0.5 u	-0.3 u	-0.1 u	retest	retest	+0.1 u	+0.3 u	+0.5 u	ments provide a
30 u	-0.8 u	-0.5 u	-0.2 u	retest	retest	+0.2 u	+0.5 u	+0.8 u	1/3 to 1/2 of the
40 u	-1.2 u	-0.8 u	-0.4 u	retest	retest	+0.4 u	+1.8 u	+1.2 u	basal adjustmer may be required
50 u	-1.5 u	-1.0 u	-0.5 u	retest	retest	+0.5 u	+1.0 u	+1.5 u	
60 u	-1.9 u	-1.3 u	-0.7 u	-0.1 u	+0.1 u	+0.7 u	+1.3 u	+1.9 u	
80 u	-2.6 u	-1.8 u	-1.0 u	-0.2 u	+0.2 u	+1.0 u	+1.8 u	+2.6 u	
100 u	-3.2 u	-2.3 u	-1.3 u	-0.3 u	+0.3 u	+1.3 u	+2.3 u	+3.2 u	

Ea	sy A	nd /	Αссι	urate	e Ca	rb F	actors
10.5 Ea	sy Carb Fa	actors					
TDD		Carb Fac	tors For Va	rious Wts a	nd TDDS		
120			3.03	3.47	3.90	4.33	
110			3.31	3.78	4.25	4.73	Carb Factor =
100		3.12	3.64	4.16	4.68	5.20	10.4 a/u x W/t (ka
90		3.47	4.04	4.62	5.20	5.78	10.4 g/u x wit (kg
80	3.25	3.90	4.55	5.20	5.85	6.50	TDD x
70	3.71	4.46	5.20	5.94	6.69	7.43	
60	4.33	5.20	6.07	6.93	7.80	8.67	
50	5.20	6.24	7.28	8.32	9.36	10.40	Carb factor = an average
45	5.78	6.93	8.09	9.24	10.40	11.56	carb factor times the
40	6.50	7.80	9.10	10.40	11.70	13.00	individual's insulin
35	7.43	8.91	10.40	11.89	13.37	14.86	sensitivity
30	8.67	10.40	12.13	13.87	15.60	17.33	D 1 11450/500 D
25	10.40	12.48	14.56	16.64	18.72	20.80	Replaces old 450/500 R
20	13.00	15.60	18.20	20.80	23.40	26.00	
15	17.33	20.80	24.27	27.73			
Wt =	100 lb	120 lb	140 lb	160 lb	180 lb	200 lb	
B	100 10	12010	14310	J	Walsh and	R Roberts	: Pumping Insulin (5th ed), 20

veniy	Carb & Correction Factors
Carb fact	or = avg. carb factor times insulin sensitivity:
	Carb Factor = 10.4 g/u X Weight (lb) TDD X 4
	Check: Does result match current Carb Factor?
Correctio	n factor closely estimated with the 2000 Rule:
	Correction Factor = 2000 / TDD
	Check: Does Corr Factor X TDD = 1800 to 2400?

Change Doses Carefully

			_		
ble shows reduced	avg fall from 10	in glucose to 9 g/u ar	after each nd from 5 to	meal when 0 4 g/u (for a	carb factor is ppr. wt & TD
low A 1-S	ep Reduc	tion In Ca	rb Factor In	npacts Avg. M	leal BG
Change in CarbF	Weight (~TDD)	Carb/day	Carb/meal	Units/meal	Impact on BC per meal*
1/10 to 1/9	160 lb (~40 u)	220 gr	73 gr	+ 1.44 u (CorrF = 50)	- 73.3 mg/dl
	240 lb	330 gr	110 gr	+ 3.62 u	- 72.4 mg/dl

Mc	ost TDDs Need To Rise
The	e average glucose on a pump is 196 mg/dl*
Мо	st pump users need a higher TDD
Ro	ughly 75% of Type 1s and 50% of Type 2s are above loose BG target goal of less than 7%
* 0	nymo Data Analueis 2 Study (CDA2)

TDD (nl insu	lin sensitivit	(y) = Wt (kg)	
			1.8	
Individual'	s Insul	in Resistand	e = TDD×	: 1.8
			Wt	(kg)
1 g Carb raises B	G =	~8 mg/dl	~4 mg/dl	~2 mg/d
•		80 lbs	160 lbs	320 lbs
			1 144 41 1	

