Advanced Pumping Strategies That Work

Children With Diabetes Orlando, FL July 8, 2011

John Walsh, PA jwalsh@diabetesnet.com (619) 497-0900 Advanced Metabolic Care + Research 700 West El Norte Pkwy Escondido, CA 92126 (760) 743-1431

View slides at www.diabetesnet.com/presentations/

Disclosure

- Book sales all pump companies
- Advisory Boards Tandem Diabetes, Unomedical, Spring, Halozyme
- Consultant Bayer, Roche, BD, Abbott, Tandem Diabetes, Medingo, Spring
- Speakers Bureau Tandem Diabetes
- Sub-Investigator Glaxo Smith Kline, Animus, Sanofi-Aventis, Bayer, Biodel, Dexcom, Novo Nordisk
- Pump Trainer Accu-Chek, Animas, Medtronic, Omnipod
- Web Advertising Sanofi-Aventis, Sooil, Medtronic, Animas, Accu-Chek, Abbott, etc.

What We'll Cover

- APP Study Results
- Importance of the TDD
- Handling Insulin Stacking
- Infusion Set Issues
- How To Stop Spikes
- CGMs for Better Control

Terms

TDD – total daily dose (all basals and boluses) of insulin

Basal –background insulin released slowly through the day

Bolus – a quick release of insulin

- o Carb bolus covers carbs
- Correction bolus lowers high readings
- Bolus Calculator (BC) what calculates bolus recommendations

Correction Target – What BC aims for when high

Bolus On Board (BOB) – bolus insulin still active from recent boluses, active insulin, insulin on board

Duration of Insulin Action (DIA) – how long a bolus will lower the BG – used to measure BOB

Age-Appropriate BG Goals

ADA Age-Appropriate A1c And Meter Goals									
Age	A1c	Approx. Avg. Meter Glucose *							
Less than 6	7.5% to 8.5%	168 to 197 (180)							
6 to 12	8% or less	183 or less (170)							
Over 12	7.5% or less	168 or less (160)							
Over 19	7% or less	154 or less (150)							
AACE: Over 19	6.5% or less	140 or less (140)							

Most adults aim for meter avg. of 154 mg/dl or less

* With only premeal BGs, meter average would be lower than these values.

Actual Pump Practices (APP) Study

- Data from 1040 complaint-free Deltec Cozmo insulin pumps downloaded in 2007
- 396 had BG values directly entered from attached CozMonitor Freestyle meter
 - Divided into thirds by average glucose
- Basal % and CarbF and CorrF formulas derived from the third that had the best control

APP Study – BG, Basal & Carb Results

Insulin Use	Insulin Use										
Group:	All 396 Pumps	Low Third	Mid Third	High Third							
Avg. Meter BG	184 mg/10.2 mmol	144 mg/dl (8.0)	181 mg/dl (10.0)	227mg/dl (12.6)							
BG Tests/Day	4.38	4.73	4.41	4.01							
TDD	49.4	47.9	49.1	51.1							
Basal %	47.6%	47.6%	47.2%	47.8%							
CarbBolus/Day	4.14	4.07	4.20	4.14							
CarbGram/Day	189.9	185.2	196.3	187.9							
CarbF	11.4	10.8	12.2	11.2							

APP Study – Correction Results

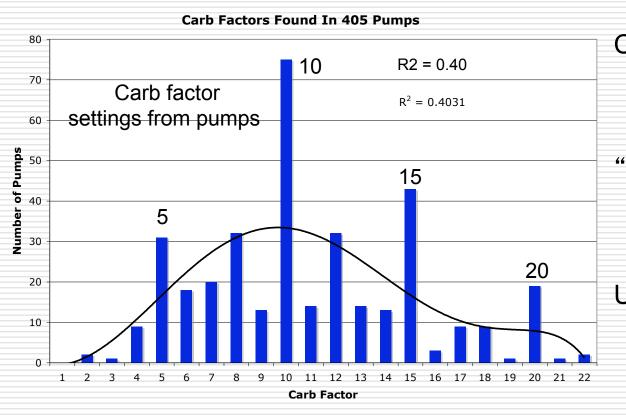
Correction Doses

Group:	All 396 Pumps	Low Third	Mid Third	High Third
Avg. Meter BG	184 mg/10.2 mmol	144 mg/dl (8.0)	181 mg/dl (10.0)	227mg/dl (12.6)
CorrBoluses/d	2.12	1.92	2.10	2.35
CorrBolus U/d	5.59 u	4.18 u	5.57 u	7.03 u
CorrBolus %	11.6%	9.0%	11.6%	14.2%
CorrF x TDD	2160	1960	2360	2330

APP Study – Insulin Doses Used By Successful Pumpers

2. Optimal Insulin Use

Mean Values For Optimal Doses In Best Control Tertile


Insulin Source	% of TDD	Interquartile Range (%)						
Basal	47.8%	39.6% to 54.9%						
Carb Boluses	43.1%	35.6% to 51.2%						
Corr Boluses	9.0%	6.2% to 11.3%						
CorrF Rule Number [*] = 1960 mg/dl per unit (IQR = 1413 to 2151)								

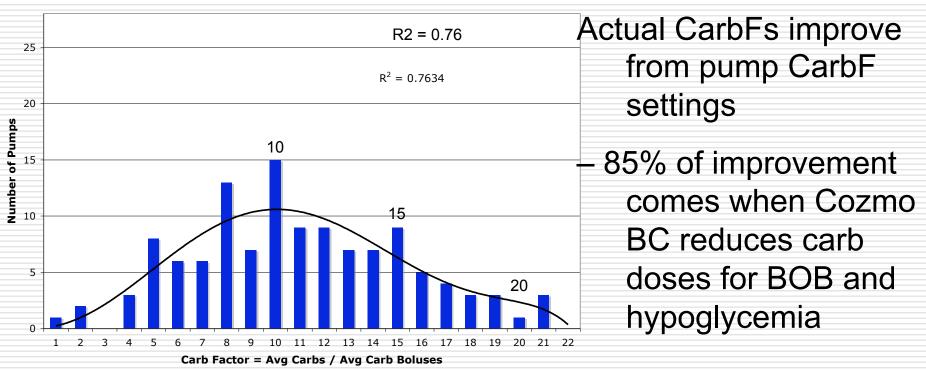
Insulin use from best control third (132 of 396 pumps) in APP Study

* CorrF Rule Number = Avg CorrF x Avg TDD

J Walsh, R Roberts, T Bailey: J Diab Science & Technology 2010, Vol 4, #5, Sept 2010

APP Study – CarbF Settings In Pumps^{1,2}

Carb factor settings in pumps were not evenly distributed.


"Magic" numbers – 5, 10, 15, and 20 g/unit – were preferred.

Use formulas to calculate basal/bolus settings -> much better than WAG!

- 1. J Walsh, R Roberts, T Bailey: J Diab Science & Technology 2010, Vol 4, #5, Sept 2010
- J. Walsh, D. Wroblewski, and TS Bailey: Insulin Pump Settings A Major Source For Insulin Dose Errors, Diabetes Technology Meeting 2007

APP Study – CarbFs Actually Used¹

Actual Carb Factors Used – Low Mean BG

Carb Factors actually used in best control tertile – avg carbs/avg carb bolus per day

J. Walsh, D. Wroblewski, and TS Bailey: Insulin Pump Settings – A Major Source For Insulin Dose Errors, Diabetes Technology Meeting 2007

APP Study Revelations

- Don't use "magic" numbers base starting settings on formulas
- Carb counts, number of carb boluses/day, number of BG tests/day, on average, have no or minimal impact on average glucose
- TDD and pump settings have greatest impact on avg. BG
- Most pumpers need a higher TDD

To Set Up Your Pump BC Correctly

Your doctor will determine:

- An accurate TDD (MAJOR factor)
- Accurate basals (~50% of TDD)
- An accurate CarbF
- An accurate CorrF
- An accurate DIA (from research studies)

Dosing For Success

- 1. Stop lows first
- 2. Find your iTDD
- 3. Set & test basals
- 4. Set & test CarbF
- 5. Lower post meal BGs
- 6. Set & test CorrF

- for normal, stable BGs
 - keeps overnight readings level
- fine-tune premeal BGs
- bolus early, low GI foods, Symlin, etc.
 - to bring highs down safely

Enjoy good control or return to #1

Brittle diabetes or frequent highs = wrong settings (usually)

Find An iTDD* To Correct Glucose Problems

* improved Total Daily Dose of insulin

Your TDD

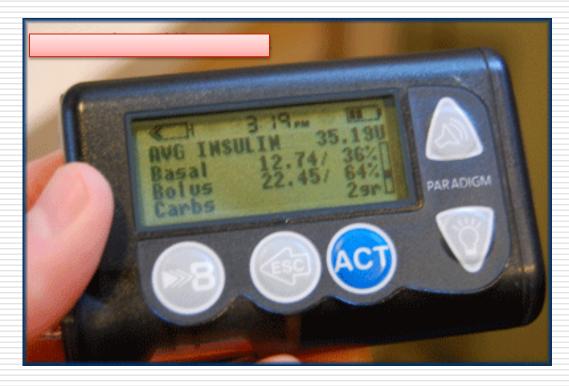
Controls the average glucose

- 1% rise in TDD = 4 mg/dl drop in avg. glucose
- Makes it easy to find accurate basal rates, CarbF, and CorrF
- The correct TDD and pump settings lead to lower and more stable BGs

Use pattern management to fine tune doses & settings

Pump Setting Formulas¹

Basal = $\sim 48\%$ of TDD **CarbF** = 2.6 x <u>Wt(lbs)</u> TDD


Carb factor is directly related to insulin sensitivity = an average CarbF times an individual's own insulin sensitivity

Corr. Factor = 1960 / TDD

Correction factor is inversely related to TDD and also inversely related to avg. BG

¹J Walsh, R Roberts, T Bailey: J Diab Science & Technology 2010, Vol 4, #5, Sept 2010

Find Your TDD

TDD = 35.19 u

Low basal at 36% 2 gr of carb/day means Bolus Wizard is not used

Use a 10 to 30 day average to analyze

Check Current Pump Settings

3. Estimates of Basal, CarbF, and CorrF Basal on TDD and Wt

-														-
		Basal '	Basal	CorrF ²			C	Carb Fa	ctor ³ in	grams/1	J			
	TDD	u/day	u/hr	(mg/dl) / u	100 lbs 45.4 kg	0 lbs 49.9 kg	l 20 lbs 54.4 kg	l 30 lbs 60.0 kg	l 40 lbs 63.5 kg	l 50 lbs 68.0 kg	160 lbs 72.6 kg	170 lbs 77.1 kg	180 lbs 81.6 kg	
_	16	7.7	0.32	122	16.3	17.9	19.5	21.1	22.8					Ē
	20	9.6	0.40	98.0	13.0	14.3	15.6	16.9	18.2	19.5	20.8			
_	24	11.5	0.48	81.7	10.8	11.9	13.0	14.1	15.2	16.3	17.3	19.5	21.7	
	28	13.4	0.56	70.0	9.3	10.2	11.1	12.1	13.0	13.9	14.9	16.7	18.6	
	32	15.4	0.64	61.3	8. I	8.9	9.8	10.6	11.4	12.2	13.0	14.6	16.3	
_	36	17.3	0.72	54.4	7.2	7.9	8.7	9.4	10.1	10.8	11.6	13.0	14.4	
_	40	19.2	0.80	49.0	6.5	7.2	7.8	8.5	9.1	9.8	10.4	11.7	13.0	Ē
	45	21.6	0.90	43.6	5.8	6.4	6.9	7.5	8. I	8.7	9.2	10.4	11.6	
	50	24.0	1.00	39.2	5.2	5.7	6.2	6.8	7.3	7.8	8.3	9.4	10.4	
	55	26.4	1.10	35.6	4.7	5.2	5.7	6. I	6.6	7.1	7.6	8.5	9.5	
	60	28.8	1.20	32.7	4.3	4.8	5.2	5.6	6. I	6.5	6.9	7.8	8.7	
	65	31.2	1.30	30.2	4.0	4.4	4.8	5.2	5.6	6.0	6.4	7.2	8.0	
	70	33.6	1.40	28.0	3.7	4.I	4.5	4.8	5.2	5.6	5.9	6.7	7.4	
	80	38.4	1.60	24.5	3.3	3.6	3.9	4.2	4.6	4.9	5.2	5.9	6.5	
	90	43.2	1.80	21.8	2.9	3.2	3.5	3.8	4.0	4.3	4.6	5.2	5.8	
	100	48.0	2.00	19.6	2.6	2.9	3.1	3.4	3.6	3.9	4.2	4.7	5.2	

Basal = TDD x 0.48 Correction Factor = 1960/TDD 3 Carb Factor = 10.8 x relative insulin sensitivity = (2.6 x Wt (lb))/TDD

For exact calculations, use the Pump Setting Tool at opensourcediabetes.org

J Walsh and R Roberts: Pumping Insulin (5th ed), 2011

Find Your iTDD

If current BGs are not great:

1. Lower your current TDD by about 5% for:

- Frequent lows
- Or highs AND lows IF lows come first

2. Raise the TDD, using the iTDD Table on next slide to adjust for high A1c or high meter average

• Increase TDD by 1% for each 4 mg/dl drop desired in avg BG

3. This is your improved TDD (iTDD)

Keep basal and carb bolus totals balanced

Avg BG on pumps is 183.9 mg/dl (10.2 mmol) – most need larger TDD.

The iTDD Table For High Avg. BGs

10.6 Find Your True TDD

This table helps you find a more accurate TDD when your readings are often above 140 mg/dl (mmol) AND you are not having frequent or severe lows.

Simply find a current 14 day average TDD from your pump on the left and an average glucose from your meter (or a recent A1c) on the bottom. When they intersect provides a better estimate for your TDD.

	l 4 day avg BG:	155.0	169.0	183.0	197.0	212.0	226.0	240.0	255.0	269.0
	Alc:	7.0	7.5	8.0	8.5	9.0	9.5	10.0	10.5	11.0
	15 u	20.6	21.2	21.7	22.3	22.9	23.4	24.0	24.6	25.2
	20 u	25.8	26.5	27.2	27.9	28.6	29.3	30.0	30.8	31.5
	25 u	30.9	31.7	32.6	33.4	34.3	35.2	36.0	36.9	37.7
	30 u	36.I	37.0	38.0	39.0	40.0	41.0	42.0	43.I	44.0
	35 u	41.2	42.3	43.4	44.6	45.8	46.9	48.0	49.2	50.3
อื	45 u	46.4	47.6	48.9	50.I	51.5	52.7	54.0	55.4	56.6
Current TDD	50 u	51.5	52.9	54.3	55.7	57.2	58.6	60.0	61.5	62.9
H H	55 u	56.7	58.2	59.7	61.3	62.9	64.5	66.0	67.7	69.2
	60 u	61.8	63.5	65.2	66.8	68.6	70.3	72.0	73.8	75.5
	65 u	67.0	68.8	70.6	72.4	74.4	76.2	78.0	80.0	81.8
	70 u	72.1	74.I	76.0	78.0	80. I	82.0	84.0	86. I	88. I
	75 u	77.3	79.4	81.5	83.6	85.8	87.9	90.0	92.3	94.4
	80 u	82.4	84.6	86.9	89.I	91.5	93.8	96.0	98.4	100.6
	85 u	87.6	89.9	92.3	94.7	97.2	99.6	102.0	104.6	106.9
	90 u	92.7	95.2	97.7	100.3	103.0	105.5	108.0	110.7	113.2
	95 u	97.9	100.5	103.2	105.8	108.7	111.3	114.0	116.9	119.5
	100 u	103.0	105.8	108.6	111.4	114.4	117.2	120.0	123.0	125.8

If frequent highs are main problem, use table to increase current avg. TDD from recent A1c or a 14 day BG average

> J Walsh and R Roberts: *Pumping Insulin (5th ed)*, 2011

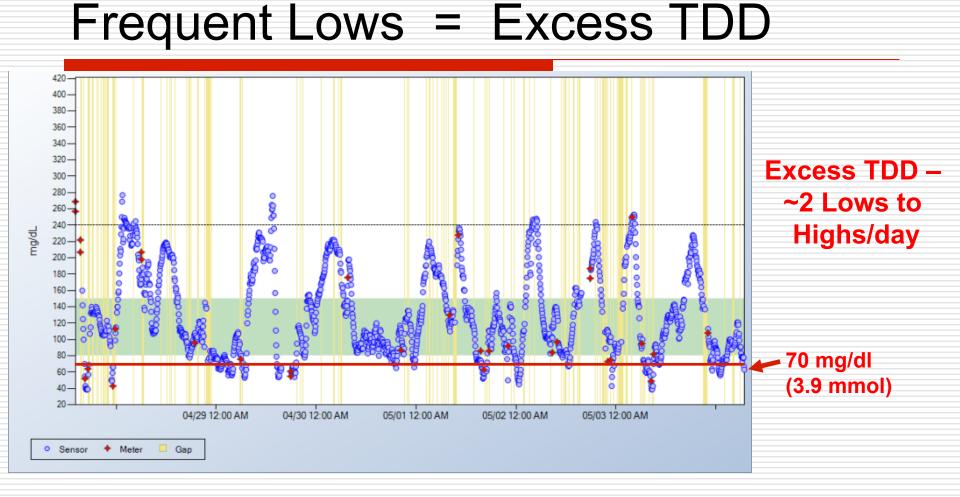
Check Current Pump Settings

3. Estimates of Basal, CarbF, and CorrF Basal on TDD and Wt

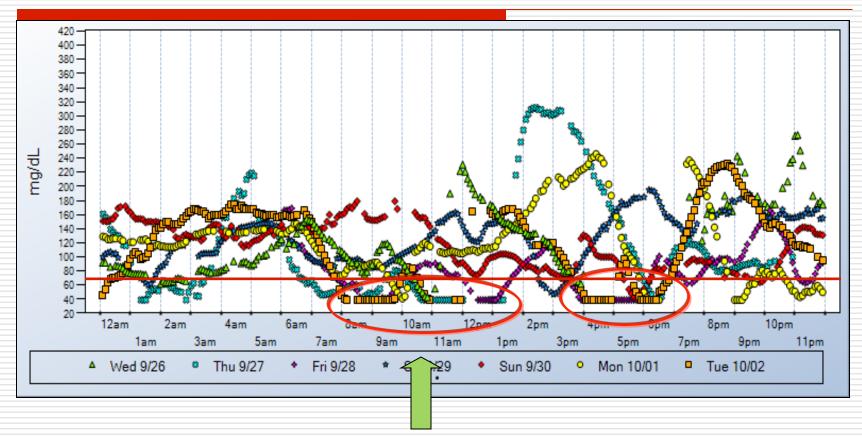
-														-
		Basal '	Basal	CorrF ²			C	Carb Fa	ctor ³ in	grams/1	J			
	TDD	u/day	u/hr	(mg/dl) / u	100 lbs 45.4 kg	0 lbs 49.9 kg	l 20 lbs 54.4 kg	l 30 lbs 60.0 kg	l 40 lbs 63.5 kg	l 50 lbs 68.0 kg	160 lbs 72.6 kg	170 lbs 77.1 kg	180 lbs 81.6 kg	
_	16	7.7	0.32	122	16.3	17.9	19.5	21.1	22.8					Ē
	20	9.6	0.40	98.0	13.0	14.3	15.6	16.9	18.2	19.5	20.8			
_	24	11.5	0.48	81.7	10.8	11.9	13.0	14.1	15.2	16.3	17.3	19.5	21.7	
	28	13.4	0.56	70.0	9.3	10.2	11.1	12.1	13.0	13.9	14.9	16.7	18.6	
	32	15.4	0.64	61.3	8. I	8.9	9.8	10.6	11.4	12.2	13.0	14.6	16.3	
_	36	17.3	0.72	54.4	7.2	7.9	8.7	9.4	10.1	10.8	11.6	13.0	14.4	
_	40	19.2	0.80	49.0	6.5	7.2	7.8	8.5	9.1	9.8	10.4	11.7	13.0	Ē
	45	21.6	0.90	43.6	5.8	6.4	6.9	7.5	8. I	8.7	9.2	10.4	11.6	
	50	24.0	1.00	39.2	5.2	5.7	6.2	6.8	7.3	7.8	8.3	9.4	10.4	
	55	26.4	1.10	35.6	4.7	5.2	5.7	6. I	6.6	7.1	7.6	8.5	9.5	
	60	28.8	1.20	32.7	4.3	4.8	5.2	5.6	6. I	6.5	6.9	7.8	8.7	
_	65	31.2	1.30	30.2	4.0	4.4	4.8	5.2	5.6	6.0	6.4	7.2	8.0	
	70	33.6	1.40	28.0	3.7	4.I	4.5	4.8	5.2	5.6	5.9	6.7	7.4	
	80	38.4	1.60	24.5	3.3	3.6	3.9	4.2	4.6	4.9	5.2	5.9	6.5	
	90	43.2	1.80	21.8	2.9	3.2	3.5	3.8	4.0	4.3	4.6	5.2	5.8	
	100	48.0	2.00	19.6	2.6	2.9	3.1	3.4	3.6	3.9	4.2	4.7	5.2	

Basal = TDD x 0.48 Correction Factor = 1960/TDD 3 Carb Factor = 10.8 x relative insulin sensitivity = (2.6 x Wt (lb))/TDD

For exact calculations, use the Pump Setting Tool at opensourcediabetes.org

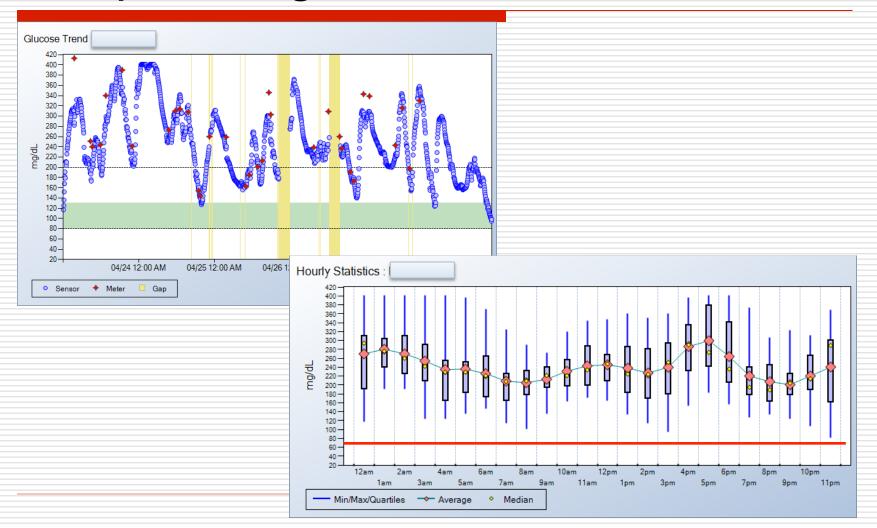

J Walsh and R Roberts: Pumping Insulin (5th ed), 2011

Change The TDD For

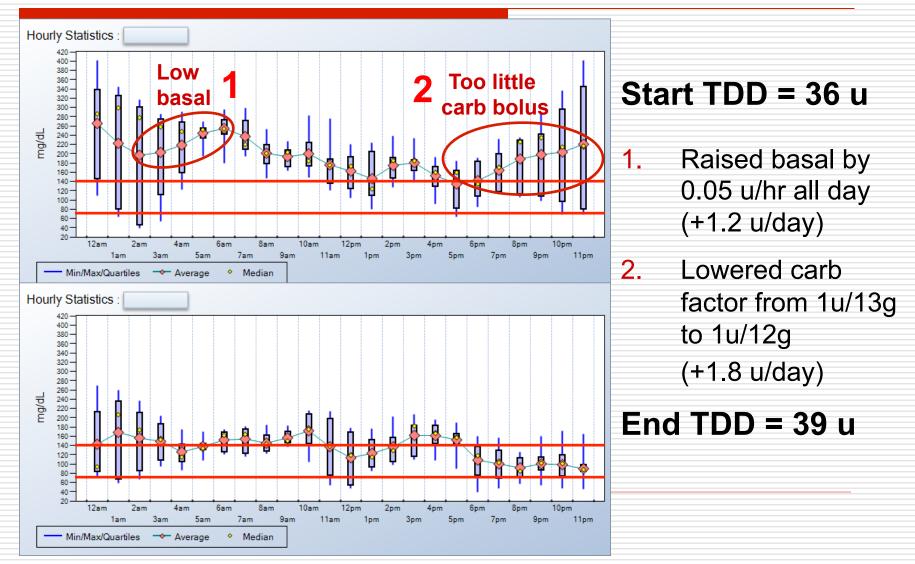

- Frequent lows or frequent highs
- Going on or off a diet
- o Loss or gain of weight
- o Seasonal changes
- Change in activity or sports
- o Vacation
- o Growth spurts
- o Puberty and menses

Do not wait until your next clinic visit!

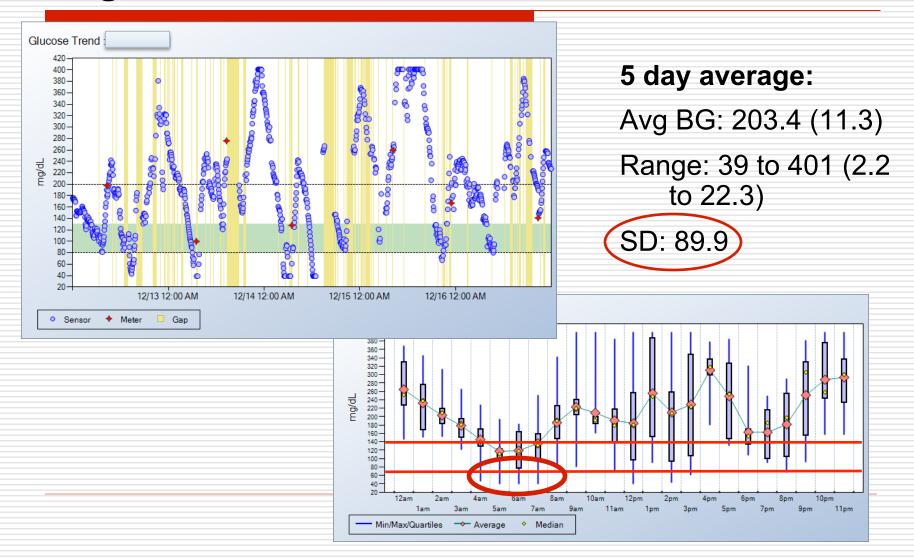
280



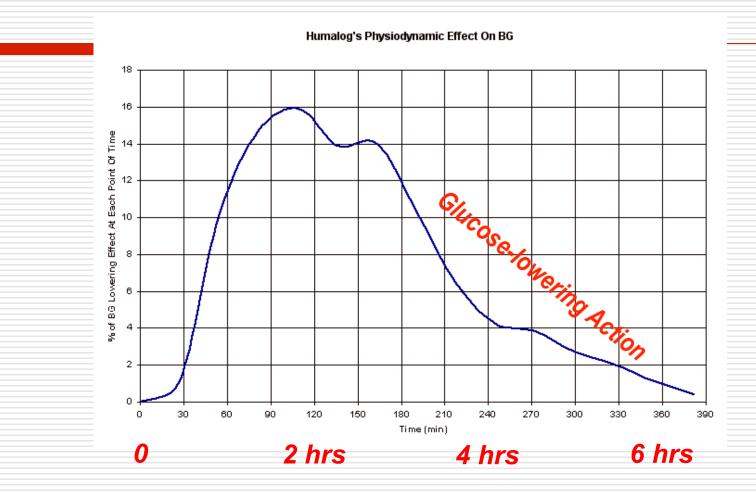
Frequent Lows



Lower the TDD and derive new basal rates, CarbF and CorrF from it.


Frequent Highs = A Low TDD

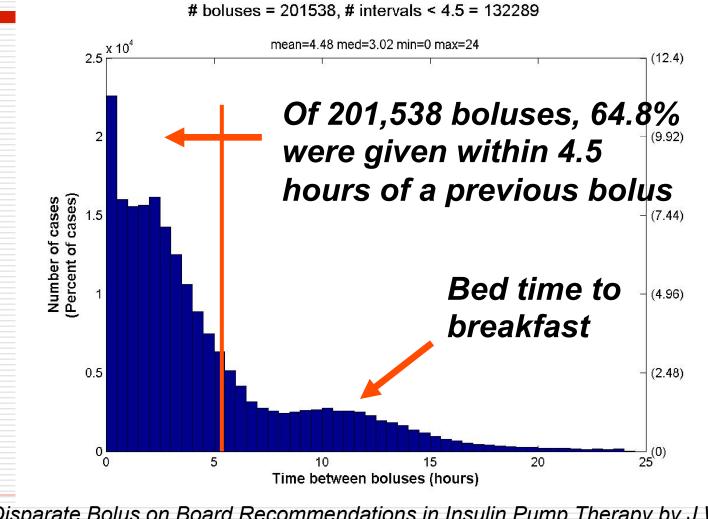
TDD Before & After Adjustment


Highs And Lows – With A Pattern

Insulin Stacking

- Happens anytime two or more boluses overlap
- Measured in pump as bolus on board (BOB, IOB, active insulin)
- Used in new bolus calculation once a BG value is entered
- Impact of a bolus can't be measured accurately against BG value until 90 to 120 minutes after it was given
- The safest way to minimize insulin stacking is to subtract BOB from correction bolus first, then from a carb bolus if there is BOB remaining

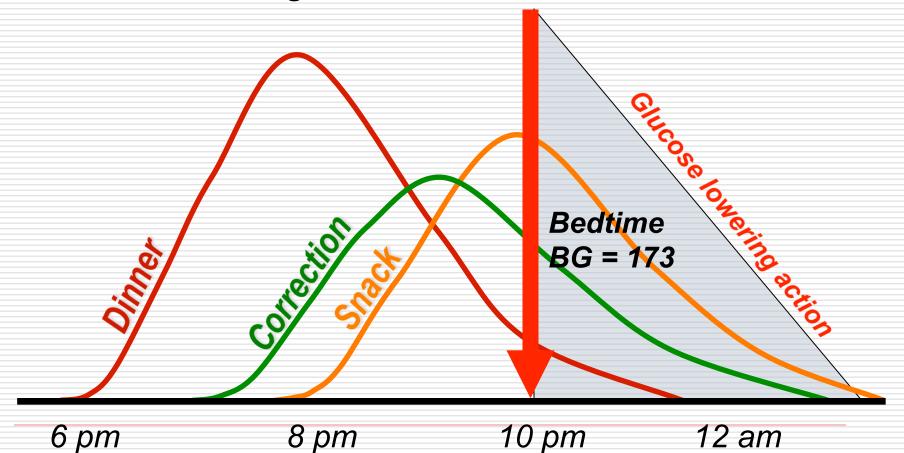
Duration Of Insulin Action (DIA)


Rapid insulin lowers the glucose for 4.5 to 6.5 hrs. This is <u>physiologic</u> – it DOES NOT CHANGE in the body when you change the DIA setting in your pump!

BOB For Different DIAs In Pump

BOB Re	BOB Remaining After A 10 unit Bolus (Curvilinear)										
With	BOB tl	BOB that your pump thinks is left after:									
this DIA	1 hr	2 hr	3 hr	4 hr	5 hr						
3.0 hrs	7.0 u	2.6 u	0 u	0 u	0 u						
4.0 hrs	8.2 u	4.7 u	1.8 u	0 u	0 u						
4.5 hrs	8.7 u	5.5 u	2.6 u	1.0 u	0 u						
5.0 hrs	9 u	6.5 u	3.6 u	1.5 u	0 u						

A short DIA causes hidden insulin stacking!


Insulin Stacking Is Common

Disparate Bolus on Board Recommendations in Insulin Pump Therapy by J Walsh, D Wroblewski, T Bailey. Poster 2007 AACE Meeting

Bedtime BG = 173 mg/dl – is there an insulin or a carb deficit?

What Would You Do?

Your child has a bedtime glucose of 121 and wants a 50 gram snack, but she has 5 units of BOB.

CarbF = 10 g/u, CorrF = 50 mg/dl, Target = 120 mg/dl

Would you:

- A. Cover her bedtime carbs with a full bolus?
- B. Cover part of these carbs?
- C. Let her eat these carb without a carb bolus?

No Two Pump BCs Give Same Bolus Recommendations

Pun	Pumps Give Different Bolus Recommendations										
	Glucose	Actual Need	Pump A	Pump B	Pump C						
CarbF = 10	119 mg/dl	0 u	0 u	5 u	5 u						
CorrF = 50	121 mg/dl	0 u	5 u	5 u	5 u						
Target = 100	200 mg/dl	2 u	5 u	5 u	7 u						
DIA = 5 hrs	300 mg/dl	4 u	5 u	5 u	9 u						

Pumper wants to eat 50 gram dessert 4 nights in a row 2 hrs after dinner when she has 5 u of BOB left from carb boluses. Her BG at this time is shown with the bolus recommendations given by different pumps.

First 2 nights she played tennis after dinner, not on 3rd, stress on 4th.

Use Bolus Overrides When Needed

- Your pump doesn't know everything change bolus recommendations when the situation demands
- Dr. Irl Hirsch suggests that about 25% of all bolus recommendations will be changed when the user knows what they' re doing
- A CGM's trend arrows really helps decide

Calculate A Bolus Yourself

- 1 Add Carb and Correction Boluses together
- 2 Subtract BOB
- 3 Get an accurate bolus!

Examples:

- 1. Carb bolus = 3 u, corr bolus = 1 u, BOB = 4 u3 + 1 = 4 4 - 4 = 0 u No bolus needed
- 2. Carb bolus = 2 u, corr bolus = 1 u, BOB = 4 u 2 + 1 = 3 3-4 = -1 u More carbs are needed

Use A Single Correction Target

Where In Correction Target Range Does The Pump Aim?		BGs inside correction target range ARE NOT
Pump A	Middle	CORRECTED.*
Pump B	Top and Bottom	
Pump C	Middle	

Best to use a narrow correction target range, such as 100 to 120 mg/dl or a single correction target, such as 110 mg/dl.

* For range 70 to 180, BGs of 71 or 179 are not adjusted for.

Calculate Carbs Needed For Low

- 1 Give 10 grams (child) to 15 grams (adolescent or adult) for low
- 2 And add BOB x CarbF (to offset BOB)
- **3** To get carbs needed! (+ a FEW extra for safety)
- **Example:** 6 yo with low BG, BOB = 1.6 u, CarbF = 10 g, no extra activity:

10 g + (1.6 x 10) = 10 + 16 = 26 grams for low

Stops most lows to highs!

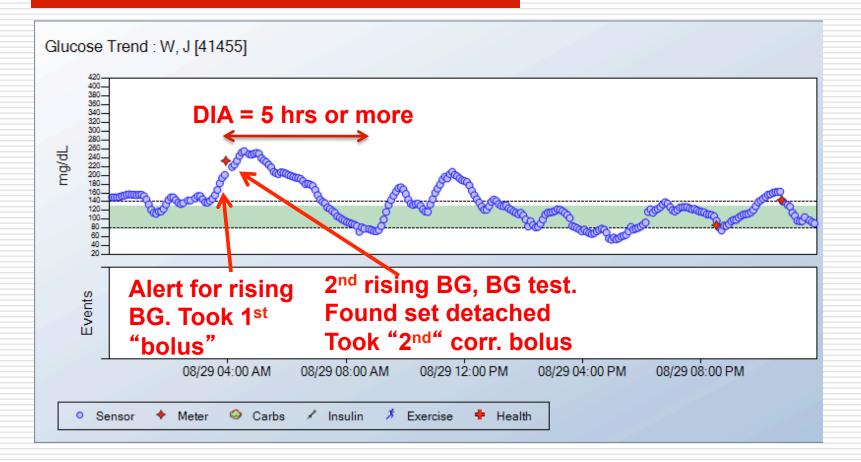
Have Infusion Set Problems?

- Do sites often "go bad"?
 - Having two or more "unexplained" highs in a row?
- Do highs correct only after you change the infusion set?
- Happen more than once a year?

Yes?

- Anchor the infusion line with tape
- Review site prep technique
- Switch to a different brand of infusion set

Infusion Set/Patch Pump Can Go Bad


- Leaking from site (or hub)
- Not taping down the infusion line (tugging)
- Auto-inserters —> bent or kinked Teflon
- Detachment
- Bleeding (hematoma)
- Clogging, blockage, occlusion
 - High readings seen for several hours before occlusion alarm occurs

APP – Occlusions Worsen Control

BG Tertile	Low	Middle	High
Avg BG	146.6	181.6	229.3
BGs/day	4.74	4.52	4.22
Blocks/ month	1.36	3.04	3.57

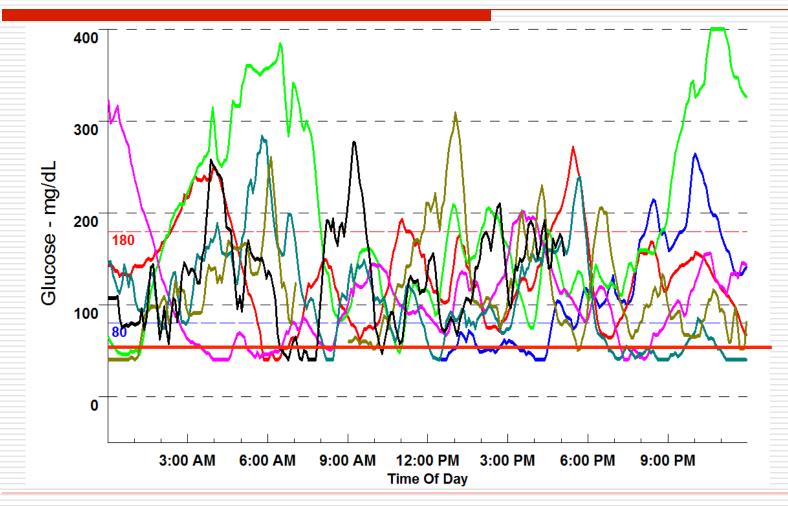
Infusion Set Failure On CGM

Occlusions / Blockages

Should not happen!

More than once a month?

- Change infusion set type
- Or brand of insulin (rare)


CGMs For Better Control

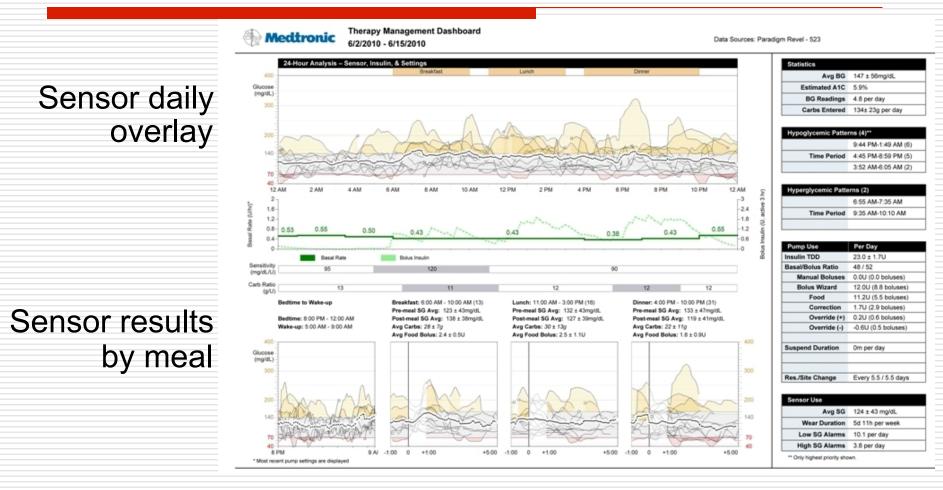
CGM by Jackson Pollack

One Pollack painting sold for \$140 million in 1996!

Make Your Own Jackson Pollack


```
Only $1,000!
```

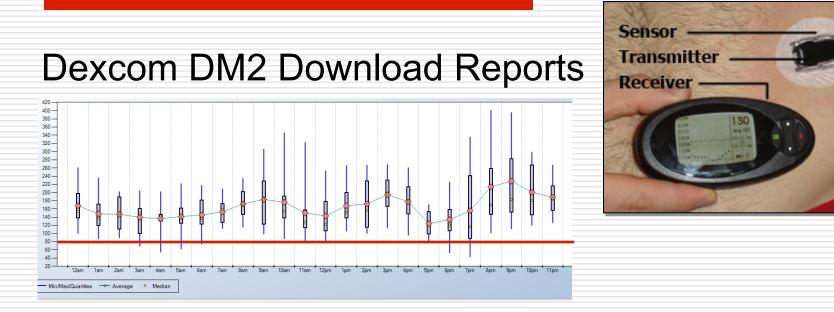
Revel[®] CGM Screens


On-Screen Reports

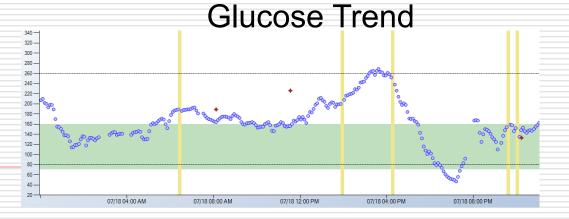
- 3 / 6 / 12 / 24-hr graphs
- Can scroll back for specific data points
- $\mathbf{\Lambda \Psi}$ "direction" indicators
- Updates every 5 minutes
- Hi/Low Alerts
- Predictive Alerts

CareLink Online Reports

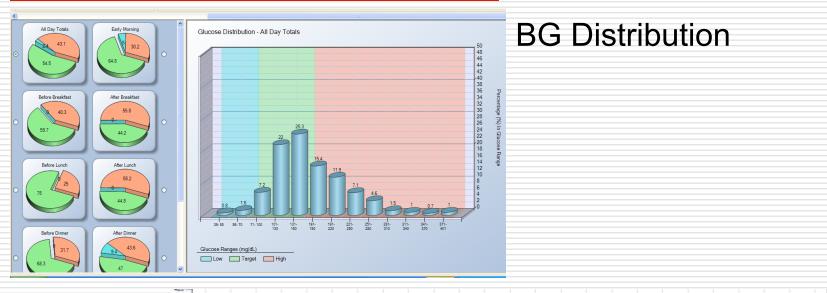
CareLink Online Reports

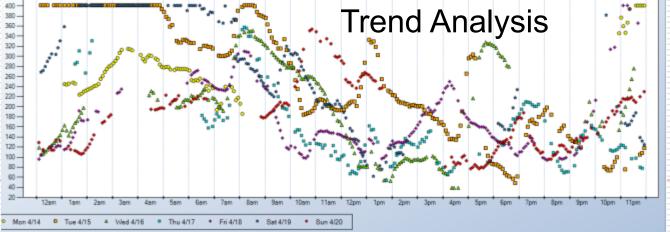

DexCom[™] Seven Plus[®]

On-Screen Reports



- 1, 3, 6, 12, 24-hr graphs
- Updates every 5 minutes
- Hi/Low alerts
- Rate of Change alerts


DexCom[™] 7 STS[®]



Hourly Stats

DexCom[™] 7 STS[®]

Alert Options

- Choose vibrate and/or beep
- Set high and low glucose threshold
- Set predictive alerts that you are likely to cross a high or low threshold (accurate up to ~20 min)
- Set rapid rise or fall 1 to 3 mg/dl/min
- Balance your needs against "nuisance factor"
 Lack of sleep may raise your glucose!

Where To Set CGM Alerts

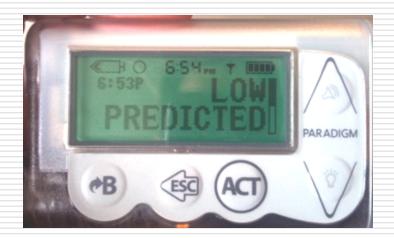
LOW: 80 mg/dl

Less than 80 – only for pregnancy

Higher for young children, high risk jobs

HIGH: 240 mg/dL to start

Gradually lower to 180 or less


The lower the high alert is, the earlier you get warned of rising BG

Adapted from: Hirsch, et al. Clinical Application of Emerging Sensor Technologies in Diabetes Management: Consensus Guidelines for CGM. Diabetes Technology & Therapeutics, 10:4, 2008, 232-244.

Trends And Predictions

Both help minimize highs and lows

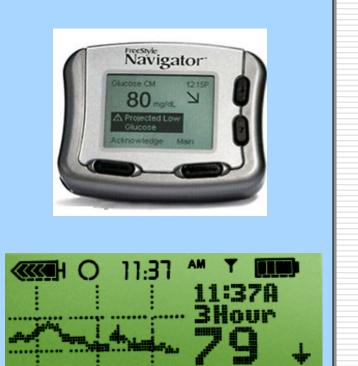
- Good for:
 - Driving
 - Sports
 - Basal tests

Reducing uncertainty

Overriding bolus recommendations

Many thanks to Gary Scheiner, MS, CDE for help generating next 2 slides.

Can CGM Replace Fingersticks?


- Not right away wait at least 12 hrs after new sensor is started
- Trust CGM only if it agrees with recent fingersticks

Only if ongoing fingersticks are done to ensure accuracy

Hypoglycemia Alerts

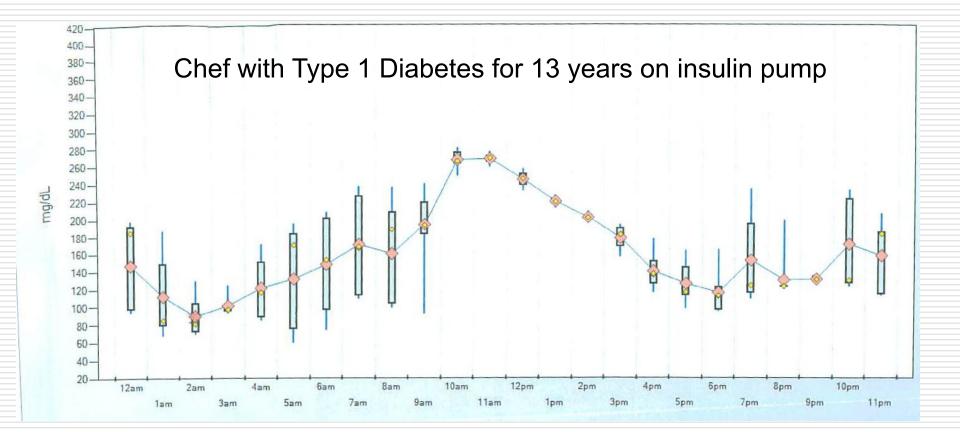
- Predictive hypo alert or hypo alert & stabilizing: less treatment
- Less than usual carbs?
- Medium G.I. food
- Hypo alert & dropping: aggressive treatment
- Full or increased carbs
- High G.I. food

Check BOB for exact guidance!

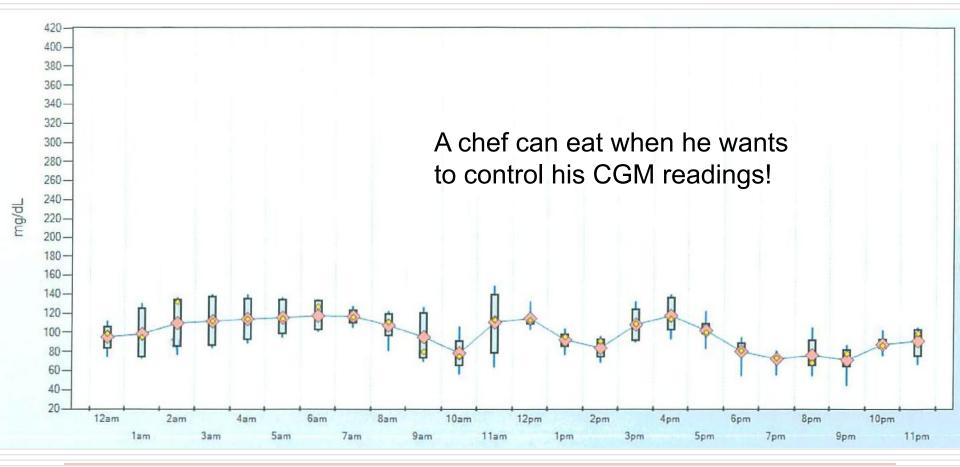
2, 3, & 6 Hr Trend Lines Show

- How different foods impact BG
- How boluses work
- After meal spiking
- Effects of exercise
- Impact of stress
- Nighttime lows

Analyze Last Bolus On CGM



6, 12, & 24 Hr Trend Lines Show

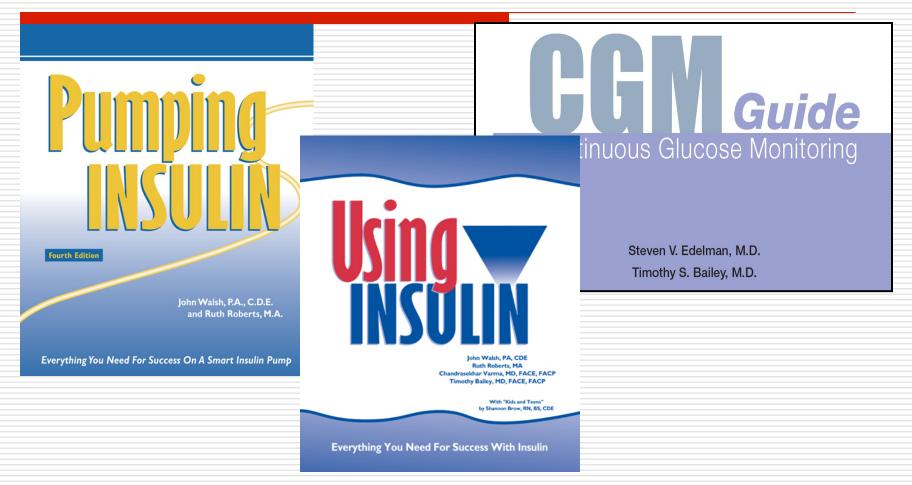


- Longer term impacts of exercise, stress, highfat or protein foods
 - Reveals overnight glucose patterns

CGM As Behavior Mod Tool: First Two Days On CGM

Chef's CGM Next Two Days

CGM Tips


- Wear CGM at least 90% of the time
 - Look at the monitor 10-20 times per day
- Don't go from BG to BG Look for the big picture!
- Don't over-react to data Avoid frequent between meal corrections until pattern is clear
- Take BOB into account
 - Calibrate!
- Minimize "nuisance" alarms

More CGM Tips

Be patient and have realistic expectations

- Don't panic if the meter and sensor numbers differ
- Look at trends not just individual values
- Rapid rises usually means more insulin needed, BUT check BOB first!
- Expect lag time, especially when BG is turning from down to up or from up to down
- No Tylenol with Dexcom

Reading – Still The Best Way To Learn

Slides at www.diabetesnet.com/diabetes-resources/diabetes-presentations/ Books at <u>www.diabetesnet.com/dmall/</u> or 800-988-4772