The Latest on Insulin Pumps

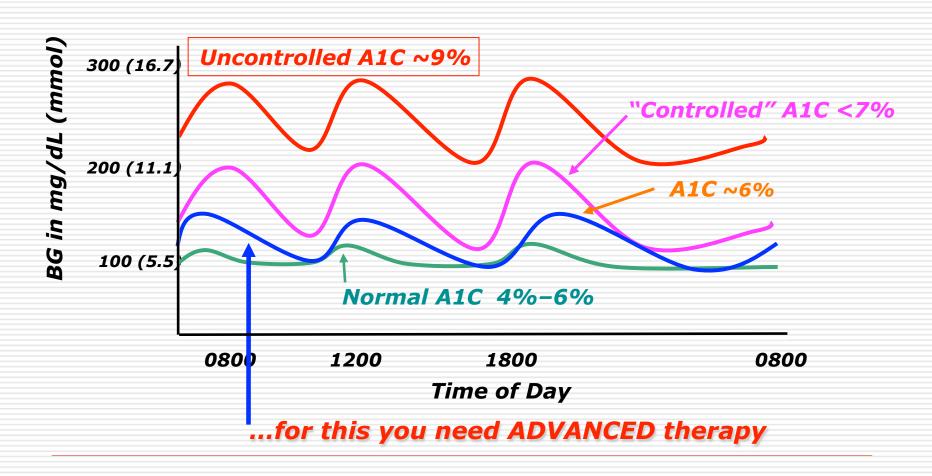
Hotel Delta Montreal Montreal, QC April 04, 2013

John Walsh, PA
jwalsh@diabetesnet.com
(619) 497-0900
Advanced Metabolic Care +
Research
700 West El Norte Pkwy
Escondido, CA 92126
(760) 743-1431

Many thanks to Animas Canada for support of this presentation.

View slides at www.diabetesnet.com/diabetes-resources/diabetes-presentations

Disclosure


- Book sales all pump companies
- Advisory Boards Tandem Diabetes, Convatec, Halozyme, AgaMatrix, PicoLife Technologies
- Consultant Bayer, Roche, BD, Abbott, Tandem Diabetes,
 Acon Laboratories
- Speakers Bureau Tandem Diabetes, Animus
- Sub-Investigator Glaxo Smith Kline, Animus, Sanofi-Aventis, Bayer, Biodel, Dexcom, Novo Nordisk, Halozyme
- Pump Trainer Accu-Chek, Animas, Medtronic, Omnipod, Tandem
- Web Advertising Sanofi-Aventis, Sooil, Medtronic, Animas, Accu-Chek, Abbott, etc.

What We'll Cover

- Actual Pump Practices Study Results
- Tuning The Bolus Calculator
- Handling Insulin Stacking
- TDD and Best BC Settings
- Infusion Set Issues

The Challenge Of Diabetes

Bringing the A1c down smoothly takes effort

Courtesy Tim Bailey, MD, FACE, CPI

Select Appropriate Goals

ADA Age-Appropriate A1c And Meter Goals				
Age	A1c	Approx. Avg. Meter Glucose *		
Less than 6	7.5% to 8.5%	168 to 197 (10 mmol/L)		
6 to 12	8% or less	183 or less (9.4 mmol/L)		
Over 12	7.5% or less	168 or less (8.9 mmol/L)		
Over 19	7% or less	154 or less (8.3 mmol/L)		
AACE: Over 19	6.5% or less	140 or less (7.8 mmol/L)		

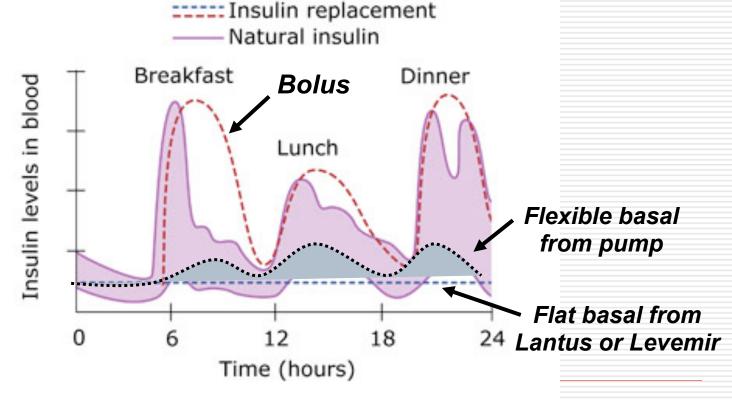
Most adults aim for a meter average of 8.6 mmol/L (154 mg/dl) or less

ISPAD goal is ≤ 7.5% for everyone, with few hypos

^{*} With only premeal BGs, meter average would be lower than these values.

Ways To Get To Goal

Pump Advantages


- Reliable, precise insulin action
- Ease of use (fewer missed doses)
- Less insulin and less insulin stacking
- Easier to exercise
- Lower A1c & less severe hypoglycemia*
- Less glucose exposure and variability
- Better atch for variable basal insulin need
- Less social limitation
- Better data access for HCPs and parents

^{*} Pickup JC, Sutton AJ: Severe hypoglycaemia and glycaemic control in Type 1 diabetes: meta-analysis of multiple daily insulin injections compared with continuous subcutaneous insulin infusion. Diabet Med 2008 Jul;25(7):765-74.

Basals And Boluses

Managing Type 1 Diabetes: Intensive/ Physiologic Insulin Replacement

A pump's basals and boluses provide a better match

The Actual Pump Practices Study

In the APP Study, we looked retrospectively at over a thousand pump wearers across the U.S. to find out:

- How pumps are actually used and
- What influences success

APP Study Background

- Data from Deltec Cozmo insulin pumps were downloaded during a routine software upgrade in 2007
- 396 pumps that had BG values directly entered from an attached CozMonitor Freestyle meter were chosen
- An average of over 73 days of data and over 300 glucose tests per pump.
- Pumps were divided into thirds by average glucose

Walsh J, Roberts R, Bailey T. Guidelines for Optimal Bolus Calculator Settings in Adults. J Diabetes Sci Technol 5(1): 1711-1717, 2011.

APP Study

- Two types of results
 - □ Typical behaviors of all 396 pumpers
 - □ Behaviors and data from third with lowest avg BG
- Basal %, CarbF and CorrF formulas were derived from the third with the lowest avg. BG
- 92.7% of pump wearers used the BC to cover carbs (> 2 meals a day)
- 96.5% used the BC to correct high readings
- 1. J Walsh, R Roberts, T Bailey: J Diab Science & Technology 2010, Vol 4, #5, Sept 2010

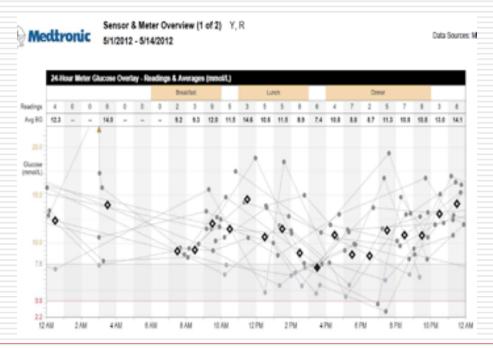
APP Study – BGs and Basal Rates

Glucose, Insulin and Carb Data				
Group:	All 396 Pumps	Low Third	Mid Third	High Third
Avg. Meter BG	144 mg/dL 8.0 mmol/L	181 mg/dL 10.0 mmol/L	227mg/dL 12.6 mmol/L	144 mg/dL 8.0 mmol/L
BG Tests/Day	4.38	4.73	4.41	4.01
TDD	49.4	47.9	49.1	51.1
Basal %	47.6%	47.6%	47.2%	47.8%

^{1.} J Walsh, R Roberts, T Bailey: J Diab Science & Technology 2010, Vol 4, #5, Sept 2010

APP Study – Carb Boluses

Glucose, Insulin and Carb Data				
Group:	All 396 Pumps	Low Third	Mid Third	High Third
Avg. Meter BG	184 mg/dl 10.2 mmol/L	144 mg/dl 8.0 mmol/L	181 mg/dl 10.1 mmol/L	227mg/dl 12.6 mmol/L
CarbBolus U/d	20.4 u	20.9 u	20.4 u	19.8 u
CarbBolus/Day	4.14	4.07	4.20	4.14
CarbGram/Day	189.9	185.2	196.3	187.9
CarbF	11.4	10.8	12.2	11.2


^{1.} J Walsh, R Roberts, T Bailey: J Diab Science & Technology 2010, Vol 4, #5, Sept 2010

APP Study – Unexpected Results

- Basals averaged 48% in low, medium, and high glucose groups
 no impact on glucose outcomes
- No difference in grams of carb eaten or number of carb boluses and correction boluses given per day
- Glucose tests per day showed "significance" but had no meaningful impact on glucose outcomes – the high BG group tested BGs almost as often as low
- Occlusions significantly raised avg BG
- Those with highest BGs used MORE insulin → they either need more insulin OR need to stop losing it
- 1. J Walsh, R Roberts, T Bailey: J Diab Science & Technology 2010, Vol 4, #5, Sept 2010

APP Study – Major Conclusion

- Find an accurate TDD
- Then get pump settings from it

Pattern management starts once TDD is accurate.

Tips – Dose For Success

1. Stop lows first

2. Find an iTDD — for normal, stable BGs

3. Set & test basals – keeps overnight readings level

4. Set & test CarbF — fine-tune premeal BGs

5. Lower post meal BGs – bolus early, low GI foods, add fiber Symlin, GLP-1 agonist, etc.

6. Set & test CorrF — to bring highs down safely

Enjoy good control or return to #1

Brittle diabetes or frequent highs? Usually = the wrong settings!

Tips – The Other Things You Need

- Check glucose 6 x a day or wear a CGM
- Use the bolus calculator for all boluses
- Cover all carbs with a bolus before eating, unless there's a good reason not to
- Don't over-treat lows with carbs
- Don't over-treat highs with insulin
- Don't give blind boluses

Tuning the Bolus Calculator

Bolus Calculator Settings

This Setting	Assists	
Basal rates	Safe sleep (~50% of TDD)	
CarbF or I:C ratio	Cover carbs well	
CorrF or ISF	Lower highs safely	
Target glucose	Correct to specific goal	
DIA	Accurately measure IOB to minimize insulin stacking	

Average TDD – controls the frequency of low and high glucoses **BOB** (IOB, active insulin) – units of glucose lowering activity left from recent boluses

Bolus Calculator

Input: Current glucose

Photo courtesy www.sixuntilme.com

Grams of carb

Photo courtesy emilyboller.com

Output: A recommended bolus with display of units for carbs, correction (if any), and remaining IOB (if any)

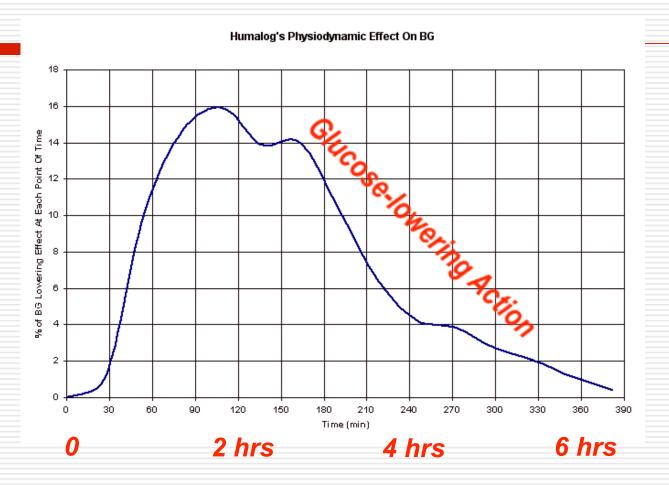
Set Correction Target with Care

Where In Correction Target Range Does The Pump Aim?			
Animas, Omnipod Middle			
Medtronic	Top or Bottom		
Tandem	3.9 mmol/L (70 mg/dl)		

BGs inside target range are *not corrected*.

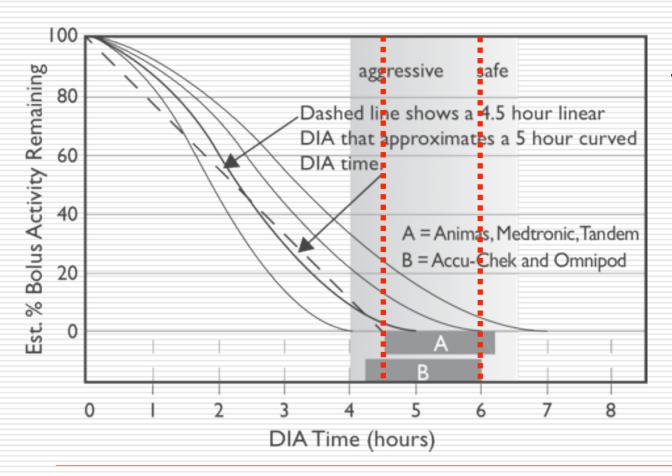
For range of 4-10 mmol/L (70 to 180 mg/dl), BGs of 4.1 to 9.9 mmol/L are *not corrected*.

Bottom Line: Use a single correction target (ie, 6.1 mmol/L or 110 mg/dl), OR a narrow correction range (ie, 5.6-6.7 mmol/L or 100-120 mg/dl).


DIA, BOB, and Insulin Stacking

Duration Of Insulin Action (DIA)
How long a bolus lower the glucose

Bolus On Board (BOB)

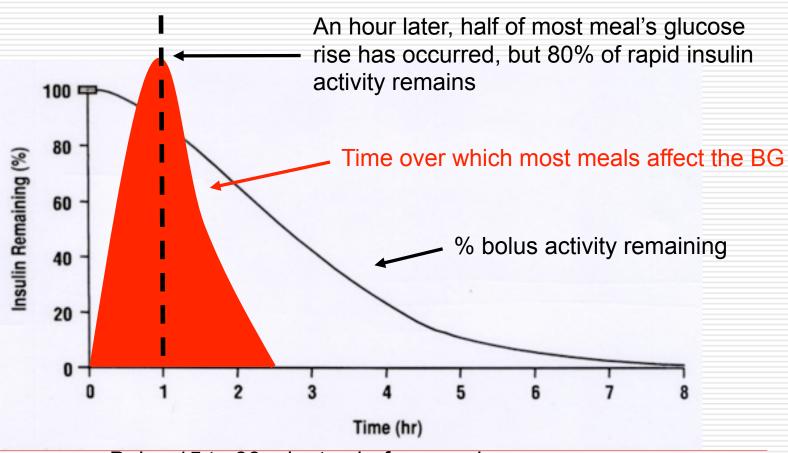

Bolus insulin still active from recent boluses

Duration Of Insulin Action (DIA)

Rapid insulin lowers the glucose for 4.5 to 6.5 hrs. This is <u>physiologic</u> – it DOES NOT CHANGE in the body when the DIA is changed in the pump!

Recommended DIA Times

Set DIA to 4.5 to 6 hrs for accurate calculation of BOB and bolus doses


Graphic adapted from Mudaliar et al: Diabetes Care, 22: 1501, 1999

Typical Carb Digestion Times

Food Digestion Time		Food Digestion	Food Digestion Time		
water	0 m	fish	30-60 m		
fruit/veg juice	5-20 m	milk/cot cheese	90 m		
fruit/veg salad	20-40 m	legumes/beans	2 hr		
melons/oranges	30 m	egg	45 m		
apples/pears	40 m	chicken	1.5-2 hr		
broccoli/caulif	45 m	seeds/nuts	2.5-3 hr		
raw carots/beets	50 m	beef/lamb	3-4 hr		
potatoes/yams	60 m	cheese	4-5 hr		
cornmeal/oats	90 m				

Take Home: Choose combo foods to lengthen carb digestion time

Most Carbs are Faster than "Rapid" Insulin

Take Home:

Bolus 15 to 30 minutes before meals

Use extended and combo boluses sparingly

From **Pumping Insulin**

Clever Pump Trick – Bolus Early To Stop Meal Spiking

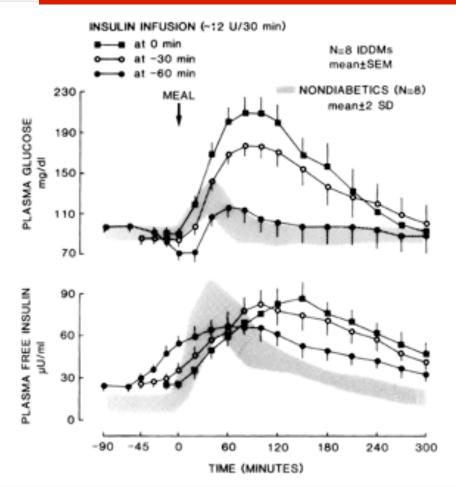
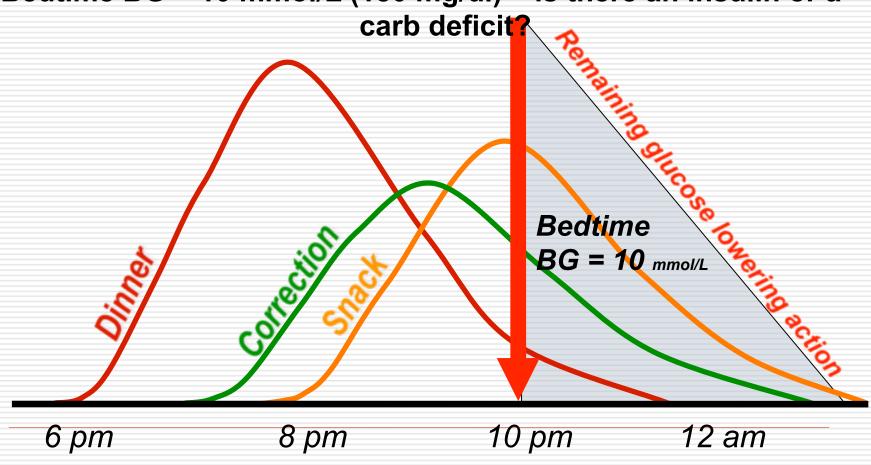


Figure shows Regular insulin injected 0, 30, or 60 min before a meal

Normal glucose and insulin profiles in the shaded areas

Even though, best glucose occurred with 60 minute bolus – too risky to recommend!!!

Early boluses – the best-kept secret for better control


GD Dimitriadis and JE Gerich: Importance of Timing of Preprandial Subcutaneous Insulin Administration in the Management of Diabetes Mellitus. Diabetes Care 6:374-377, 1983.

Insulin Stacking

- Happens anytime two or more boluses overlap
- Measured in pump as bolus on board (BOB, IOB, active insulin)
- Used in new bolus calculation once a glucose is entered
- Impact of a bolus can't be measured accurately against BG value until 90 to 120 minutes after it was given
- The safest way to minimize insulin stacking is to subtract BOB from correction bolus first, then from a carb bolus if there is BOB remaining

Insulin Stacking

Bedtime BG = 10 mmol/L (180 mg/dl) – is there an insulin or a

A Short DIA Hides Insulin Stacking

3 hours after a 10 unit bolus, this shows how much BOB a pump will think is left with each DIA time:

	Estimate Of Insulin On Board Remaining			
For a DIA setting =	3 hr	4.5 hr	5.0 hr	5.5 hr
Estimated IOB =	0 u	2.5 u	3.4 u	4.0 u

Always set the DIA from an insulin's real action time

Do not change DIA to fix control problems

Pump BCs May at Times Give Excess Bolus Recommendations

Two hours after dinner when she has 5 u of BOB left, a pump user eats a 50 gram dessert on 4 consecutive nights. Her glucose and the bolus recommendations from different pumps are shown.

Pumps Give Different Bolus Recommendations				
	Glucose	Actual Need	Animas	Other Pumps
Nigh	nt 1: BG = 6.6 mmol/L	0 u	0 u	5 u
Nigh	nt 2: BG = 6.8 mmol/L	0 u	5 u	5 u
Nigh	nt 3: BG = 11.1 mmol/L	2 u	5 u	5 u
Nigh	nt 4: BG = 16.7 mmol/L	4 u	5 u	5 u

CarbF = 10 gr/u; CorrF = 2.8 mmol/L; Target = 6.7; DIA = 5 hrs

What Would You Do?

Your daughter's glucose is 6.8 mmol/L (122 mg/dl) at bedtime and she wants a 40 gram snack with 4.0 units of BOB.

CarbF = 10 CorrF = 3.0 Target = 6.7 DIA = 5

Would you:

- A. Cover her bedtime carbs with a 4.0 u bolus?
- B. Give a smaller bolus for these carbs?
- C. Give no carb bolus?

When to Override a Recommended Bolus

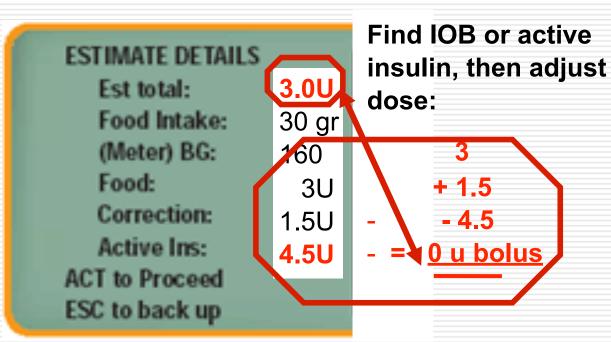
- A pump doesn't know everything override a bolus recommendation when the situation demands
- Dr. Irl Hirsch suggests that about 25% of all bolus recommendations will be changed when the user knows what they're doing
- Look at the CGM's trend arrow and check the BOB for guidance on overrides

Clever Pump Trick – Get Accurate Boluses

- If BOB is SMALLER than the correction bolus, pump's recommendation is CORRECT
- 2. If BOB is LARGER than the correction bolus, <u>subtract</u> BOB from the combined carb plus correction bolus

Example: Carb bolus = 4.0 u

Corr bolus = 1.0 u


BOB = 2.0 u **BOB larger than Corr bolus**

Accurate bolus = 4 + 1 - 2 = 3 units

Example – Recommended Bolus May Be Changed

MiniMed Meter BG 160 Mg/dL

The TDD and Best BC Settings

- The TDD controls the average glucose
- An accurate TDD makes it easy to find accurate basal rates, CarbF, and CorrF
- More accurate BC settings allow BGs to be lower and more stable

APP Study – Doses Used By Successful Pumpers

2. Optimal Insulin Use

Mean Values For Optimal Doses In Best Control Tertile

Insulin Source	% of TDD	Interquartile Range (%)			
Basal	47.8%	39.6% to 54.9%			
Carb Boluses	43.1%	35.6% to 51.2%			
Corr Boluses	9.0%	6.2% to 11.3%			

Insulin use in the third (132 pumps) with the lowest average glucose in APP Study

CorrF Rule Number* = 1960 mg/dl per unit (IQR = 1413 to 2151)

* CorrF Rule Number = Avg CorrF x Avg TDD

J Walsh, R Roberts, T Bailey: J Diab Science & Technology 2010, Vol 4, #5, Sept 2010

APP Study – Pump Setting Formulas¹

Basal = $\sim 48\%$ of TDD

CarbF =
$$5.7 \times Wt(kg)$$
 or $2.6 \times Wt(lbs)$
TDD TDD

Corr. Factor = 110/TDD (mmol/L) or 1960/TDD (mg/dl)

The correction factor is inversely related to TDD and to avg. BG

Or use the Pump Settings Tool at www.diabetesnet.com/diabetes tools/pumpsettings/

¹J Walsh, R Roberts, T Bailey: J Diab Science & Technology 2010, Vol 4, #5, Sept 2010

Size Up the Glucose Problem


- Severe An improved TDD (iTDD) will correct most major glucose problems
 - □ Select new pump settings from the iTDD
- Moderate use pattern management to fine tune doses and pump settings
- Mild tweak pump settings

If it ain't broke, don't fix it!

Tips – Steps To Control

- ☐ Stop lows first
- □ Take a bolus for every bite
 - Except for carbs used to treat a low BG
 - Or for carbs used to compensate for exercise
 - Check BG before every bolus Don't blind bolus
- □ Bolus 15 to 30 min before meals if possible
- ☐ Periodically check basal/carb bolus balance
- Look for and correct unwanted patterns

Critical Pump Data – Avg. TDD and Basal/Bolus Balance

TDD = 35.19 u

Basal % is low at 36%

2 grams of carb/day means Bolus Wizard is not being used

Verify the TDD

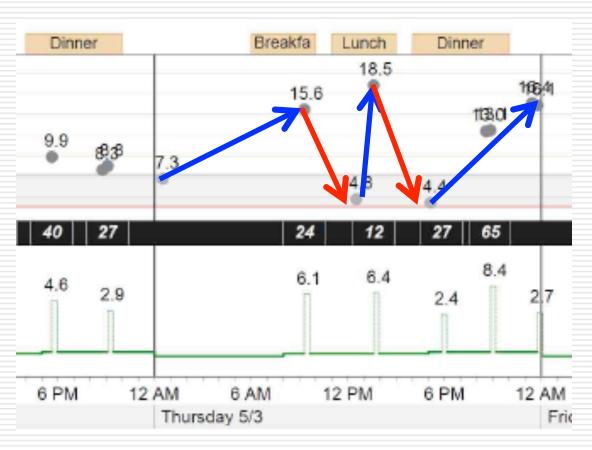
- Compare TDD to weight(kgs)/1.8
- Contrast TDD with A1c & avg. BG on meter, and check frequency and severity of lows
- Then decide if TDD should be increased or decreased

Find an Improved TDD (iTDD)

If current BGs are not great:

- o Lower the current TDD by about 5% for:
 - Frequent lows
 - Or highs AND lows IF lows come first
- Raise the TDD, using the iTDD Table on next slide to adjust for high A1c or high meter average
 - Increase TDD by 1% for each 0.3 mmol/L drop in avg BG
- This gives the improved TDD (iTDD)

Keep basal and carb bolus totals balanced


Avg BG on pumps is 183.9 mg/dl (10.2 mmol) – most need larger TDD.

Stop Frequent Lows

- You cannot tell how much excess insulin there is!
- Start with a 5% or 10% reduction in the TDD
- Compare the current TDD to an "ideal" TDD for weight.
 - □ Divide weight(kgs) by 1.8 to see what TDD would use if they have an average sensitivity to insulin

Example: Someone who weighs 72 kg would be expected to have a TDD of 40 units (72/1.8 = 4.0).

Example - Hypoglycemia

41 yo female with A1c = 6.9%

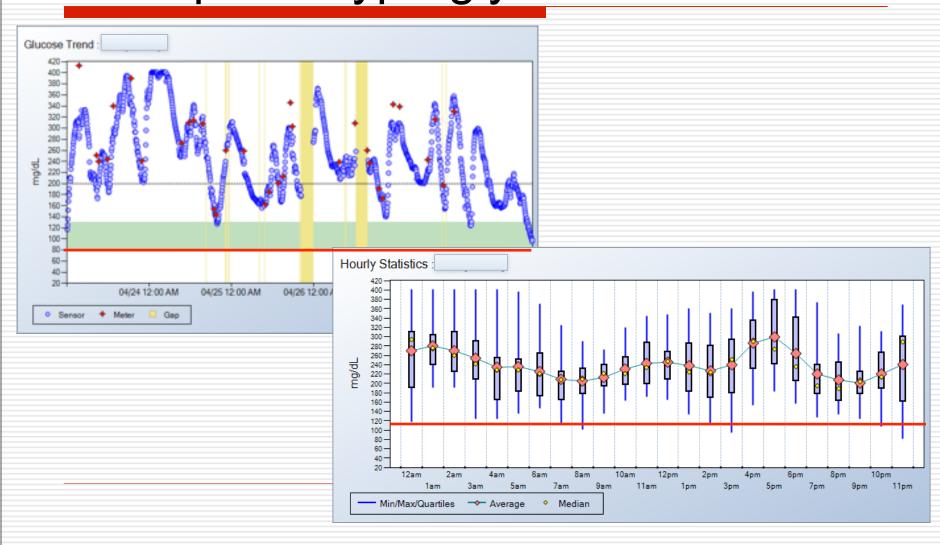
156 lb/4 = 38.0 u/d

Actual TDD = 50.5 u/d

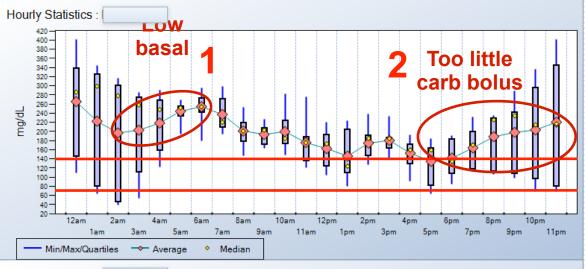
Stop Frequent Highs

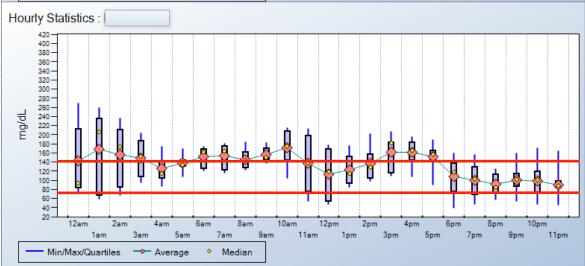
When average BG is high with few lows:

Raise TDD by 1% for each 0.33 mmol/L (6 mg/dl) or for each 0.2% in the A1c you want to lower the average glucose


Example: Amy's avg TDD is 40 u/day, avg BG is 12 mmol/L (217 mg/dl) with few lows, and her avg BG goal is 8 mmol/L (145 mg/dl):

12 mmol/L - 8 mmol/L = 4 mmol/L


4 mmol/L ÷ 0.33 = 12% rise needed in TDD


40 units x = 1.12 = 44.8 units

Example – Hyperglycemia

TDD Before & After Adjustment

Start TDD = 36 u

- Raised basal by 0.05 u/hr all day (+1.2 u/day)
- Lowered carb factor from 1u/13g to 1u/12g (+1.8 u/day)

End TDD = 39 u

Check that Pump Settings Fit the TDD

9.5 Master List for Bolus Calculator Settings: Find Your Basal Rates, CarbF, and CorrF from Your TDD (or iTDD) and Weight

7														F
	TDD or	Basal		Carb Factor ² in grams/u						CorrF ³				
	iTDD u/day	u/day		100 lbs 45.4 kg	110 lbs 49.9 kg	120 lbs 54.4 kg	130 lbs 60.0 kg	140 lbs 63.5 kg	150 lbs 68.0 kg	160 lbs 72.6 kg	170 lbs 77.1 kg	180 lbs 81.6 kg	(mg/dl) / u	
	16	7.7	0.32	16.3	17.9	19.5	21.1	22.8					122	Ē
	20	9.6	0.40	13.0	14.3	15.6	16.9	18.2	19.5	20.8			98.0	Ē
	24	11.5	0.48	10.8	11.9	13.0	14.1	15.2	16.3	17.3	19.5	21.7	81.7	Ē
	28	13.4	0.56	9.3	10.2	11.1	12.1	13.0	13.9	14.9	16.7	18.6	70.0	Ē
	32	15.4	0.64	8.1	8.9	9.8	10.6	11.4	12.2	13.0	14.6	16.3	61.3	Ē
	36	17.3	0.72	7.2	7.9	8.7	9.4	10.1	10.8	11.6	13.0	14.4	54.4	Ē
	40	19.2	0.80	6.5	7.2	7.8	8.5	9.1	9.8	10.4	11.7	13.0	49.0	Ē
	45	21.6	0.90	5.8	6.4	6.9	7.5	8. I	8.7	9.2	10.4	11.6	43.6	Ē
	50	24.0	1.00	5.2	5.7	6.2	6.8	7.3	7.8	8.3	9.4	10.4	39.2	
	55	26.4	1.10	4.7	5.2	5.7	6.1	6.6	7.1	7.6	8.5	9.5	35.6	
	60	28.8	1.20	4.3	4.8	5.2	5.6	6.1	6.5	6.9	7.8	8.7	32.7	
	65	31.2	1.30	4.0	4.4	4.8	5.2	5.6	6.0	6.4	7.2	8.0	30.2	E
	70	33.6	1.40	3.7	4.1	4.5	4.8	5.2	5.6	5.9	6.7	7.4	28.0	E
	80	38.4	1.60	3.3	3.6	3.9	4.2	4.6	4.9	5.2	5.9	6.5	24.5	Ē
	90	43.2	1.80	2.9	3.2	3.5	3.8	4.0	4.3	4.6	5.2	5.8	21.8	Ē
	100	48.0	2.00	2.6	2.9	3.1	3.4	3.6	3.9	4.2	4.7	5.2	19.6	

 $Basal = TDD \times 0.48$

For exact calculations, use the Pump Setting Tool at opensourcediabetes.org

© 2012 Diabetes Services, Inc.

J Walsh and R Roberts: Pumping Insulin (5th ed), 2012

² Carb Factor = 10.8 x insulin sensitivity = (2.6 x Wt (lb))/TDD

³ Correction Factor = 1960/TDD

TDD and Pump Settings Change for:

- Frequent lows or frequent highs
- Going on or off a diet
- Loss or gain of weight
- Seasonal changes
- Change in activity or sports
- Vacation
- Growth spurts
- Puberty and menses

Do not wait until the next clinic visit!

Basal Rates

Keep the glucose flat overnight or when a meal is skipped (with no BOB)


Easy to check – don't eat

Best basals: ~50-55% of TDD usually gives best results

<50% for young children, some elderly, high carb diet

>55% for low carb diet, insulin resistant

How Many Basals?

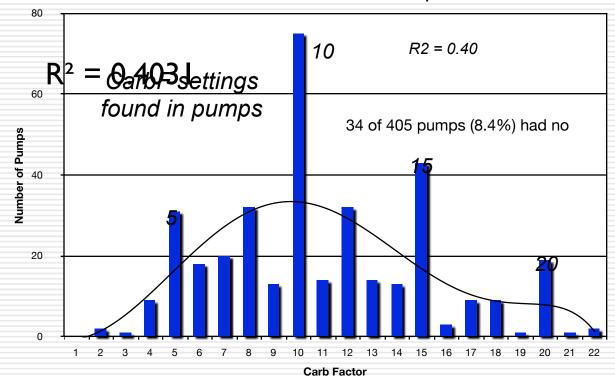
Percentage of pumpers who use 1 to 10 basals per day from self reports of several hundred pumpers at insulin-pumpers.org

Basal changes take at least
3-5 hours to have their full
effect* when basal rates
are doubled, so >5 basals
has dubious benefit

^{*} Heinemann L, Nosek L, Kapitza C, et. al. Changes in basal insulin infusion: time until a change in metabolic effect is induced in patients with type 1 diabetes. Diabetes Care. 2009;32(8):1437–1439.

Basal Tips

- 50% Rule: basals usually make up 40 to 65% of an accurate TDD
- Basal rates should be similar, such as between 0.45 to 0.7, or 1.0 to 1.4 u/hr
- Adjust basal rates in small steps
 usually 0.05 or 0.1 u/hr


- Change basal rates 3 to 8 hours before the need arises
- Don't stop (suspend) pump longer than 30 min.

Carb Counting

- Accounts for half the day's control
- Use accurate carb counts to match boluses and carbs for post-meal control and lower A1c
- Use automatic carb bolus calculations on pump

APP Study – CarbF Settings In Pumps^{1,2}

Carb factors are not evenly distributed.

People prefer "Magic" numbers – like 5, 10, 15, and 20 g/u.

Always use formulas to select settings –> much better than WAG!

- 1. J Walsh, R Roberts, T Bailey: J Diab Science & Technology 2010, Vol 4, #5, Sept 2010
- 2. J. Walsh, D. Wroblewski, and TS Bailey: Insulin Pump Settings A Major Source For Insulin Dose Errors, Diabetes Technology Meeting 2007

Carb Bolus Tips

- Make sure the carb factor works for LARGE carb meals: test with carb grams = half the body weight (lbs)
- Is carb counting accurate?
- Are boluses given 20 min before meals when glucose is normal?
- Try not to eat until below 7 mmol/L (140 mg/dl)

For frequent lows after meals -> raise carb factor #
For frequent highs after meals -> lower carb factor #

Small CarbF Change = Large BG Change

If CarbF is lowered from 1u/10g to 1u/9g					
TDD = 40 u	Corr F = 49 mg/dl per u				
Meal Size	BG Change per meal *				
60 grams	$0.67u \times 49 = -33 \text{ mg/dl}$				
100 grams	$1.1u \times 49 = -54 \text{ mg/dl}$				

* Calculated as <u>carbs in meal</u> - <u>carbs in meal</u> X <u>1960</u> new carb factor old carb factor TDD

Clever Pump Trick — How Many Carbs for a Low?

- 1. 10 grams for each 35 kg (75 lbs) of weight
- 2. + grams = the current BOB* x CarbF

Example:

- n Amy weighs 70 kg (150 lbs) = 20 grams of carb
- And she has 2 units of BOB with a CarbF of 8 grams/unit2 u x 8 g/u = 16 grams
- n For this low she needs: 20 g + 16 g = 36 grams

Add extra carbs as needed for recent or planned exercise.

* DIA time setting must be accurate to get an accurate BOB.

Types of Carb Boluses

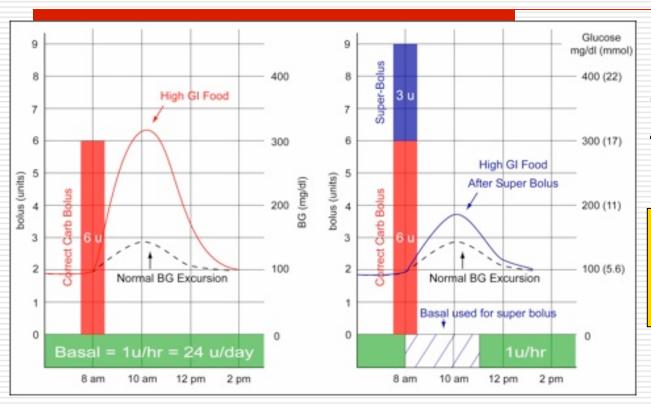
Regular

Taken immediately – for most meals

Combo / dual wave

 Some now, some later – bean burrito, some pastas and pizzas, Symlin

Extended / square wave


Extended over time – gastroparesis,Symlin, GLP-1 agonist

Don't take combo/extended boluses without a clear reason.

Clever Pump Trick – Stop Post Meal Spikes

- Count carbs carefully
- Bolus 15 to 30 min before meals if possible
- Use combo bolus (part now/part later) with picky eaters
- When high, wait till below 8 mmol/L (144) before eating
- Eat low GI foods, fewer carbs
- Add fiber/psyllium/acarbose/Symlin/GLP-1 agonist
- Exercise after meals
- Use a Super Bolus

Clever Pump Trick – Super Bolus – Shift Basal To Bolus

Helps when eating over 30 to 40 grams of carb

Max carbs/meal = Wt(lb) X 0.36 to stay in control ²

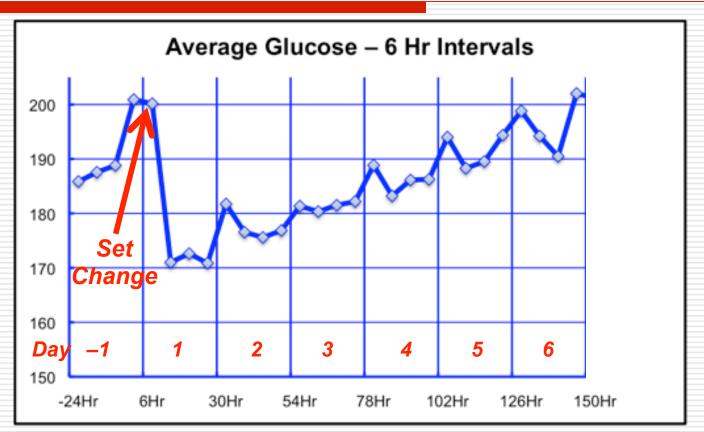
Future: Super Bolus shifts part of the next 2 to 3.5 hrs of basal insulin into the bolus with less risk of a low later. 1,2

¹ J. Walsh: http://www.diabetesnet.com/diabetes presentations/super-bolus.html September, 2004

² J. Bondia, E. Dassau, H. Zisser, R. Calm. J. Vehí, L. Jovanovic, F.J. Doyle III, Coordinated basal-bolus for tighter postprandial glucose control in insulin pump therapy, Journal of Diabetes Science and Technology, 3(1), 89-97, 2008

Infusion Sets

The Achilles Heel of Pumps


Infusion Set Failure

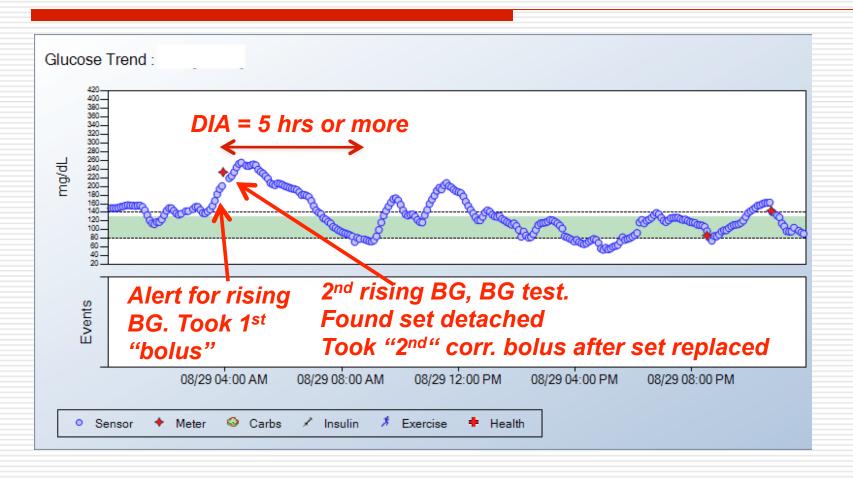
Infusion sets fail from:

- Partial/complete pullouts
- Leaking around Teflon to skin (common)
- Loose hub
- Use of auto-inserter
- Pets & punctures
- Occlusions

Average BGs Before & After Set Change

Average BG levels during 6 hr intervals before and after infusion set change in 396 pumps with ~20 infusion set changes/pump.

Unpublished data from Actual Pump Practices Study by J Walsh, R Roberts, and T Bailey


Is There an Infusion Set Problem? Ask:

- Do sites often "go bad"?
- Have "scarring" or "poor absorption"?
- Two or more "unexplained" highs in a row?
- Do highs correct when the infusion set is changed?
- Does this happen more than once a year?

If the answer is yes:

- Anchor the infusion line with tape
- Review site prep technique
- Switch to a different brand of infusion set

Infusion Set Failure Shown On CGM

APP – Occlusions Worsen Control

BG Tertile	Low	Middle	High		
Avg BG	144 mg/dl 8.0 mmol/L	181 mg/dl 10.1 mmol/L	227mg/dl 12.6 mmol/L		
BGs/day	BGs/day 4.73		4.01		
Blocks/month	1.36	3.04	3.57		

Use Reliable Infusion Sets

ALWAYS anchor the Comfort infusion line with 1" tape to minimize site irritation and reduce tugging that can cause leaks.

Anchors - Not Just For Boats!!!

1" tape on infusion line:

Stops movement of Teflon under the skin

 Stops "unexplained highs" from insulin leaks to skin surface

- Less irritation
- Prevents pull outs
- Tugs on Teflon

Lose tape not insulir

Questions & Discussion

Slides at www.diabetesnet.com/diabetes-resources/diabetes-presentations
Books at www.diabetesnet.com/dmall/ or 800-988-4772