

Background 1

We have been developing new ideas for several years to make insulin pumps more helpful to wearers. In August, 2008, we began to collect these ideas into PowerPoint slides to distribute as "prior art" to allow their wide use without patentability.

In their current "introductory" form, not all are optimized for ease of use and would have simpler interfaces when integrated into pumps. Many alerts and some tools would operate in the background and be activated only as needed, such as the High Glucose Alert (#22), the Insulin Stacking Alert (#25), and the Infusion Set Monitor (#9).

Background 2

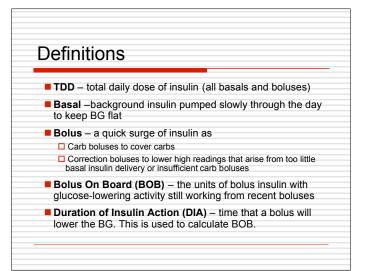
These tools and alerts address issues with current pumps, patch pumps, and infusion sets, but many will be equally useful as continuous monitors integrate with pumps, and as semiclosed and closed loop pumps appear.

Two sections are provided:

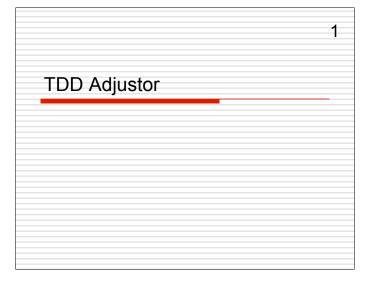
- New Pump Tools (#1 to #21)
- New Pump Alerts (#22 to #29)

More tools and clarifications will be added over the next few weeks at our site http://www.diabetesnet.com/diabetes_presentations/index.php.

Rationale

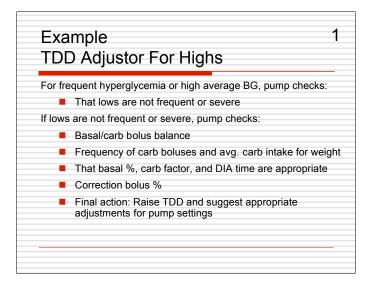

- Pumps* contain a wealth of underutilized clinical data and have yet to be optimized for their glucose management capability.
- Downloading clinical data for analysis is difficult and often not done, with this lack of analysis greatly limiting their benefits.
- Cell-phone size high resolution color screens and improved memory now allow data analysis and display of results to be done in the pump itself.
- This would speed identification and resolution of glucose control and insulin dosing issues. A clear presentation of these issues inside data currently collected can provide significant medical benefits.

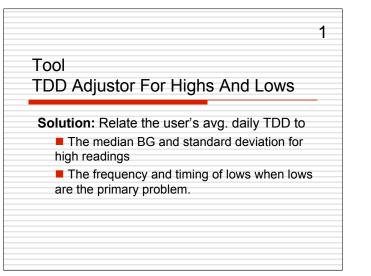
* "Pump" collectively refers to the pump body, PDA, cell phone, or device which controls insulin delivery and stores data.

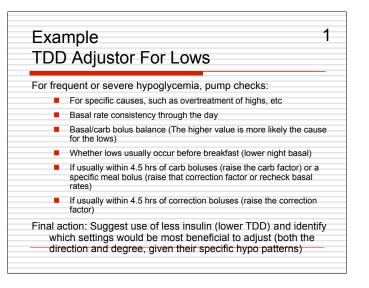

Overview

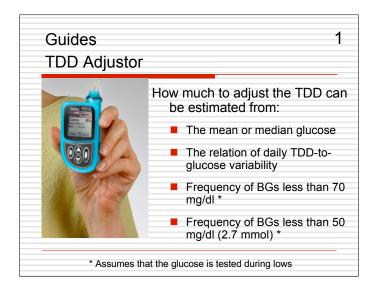
These slides present pump tools and alerts that:

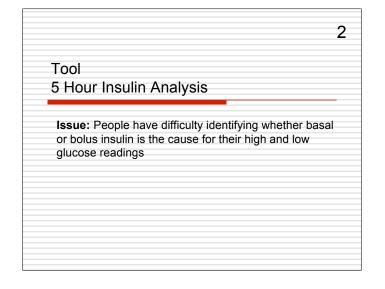
- 1. Maximize benefits from valuable clinical information contained in devices
- 2. Improve data entry and use, and clarify analyzed data
- 3. Minimize common errors in pump setting
- 4. Help identify behaviors and interactions that impact control

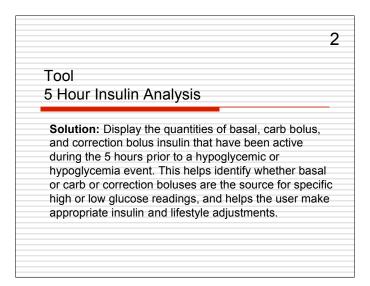

New Pump Tools	
 TDD Adjustor 5 Hour Insulin Analysis Temp Basal & Bolus Doses Multi-step Temp Basals Super Bolus Meal Sizer Bolus Exercise Compensator BG Source ID Infusion Set Monitor Satellite Time Setting Checkers 	 Enhanced Therapy Effectiveness Multi-Linear & Curvilinear DIA Carb Factor Accuracy Automated Carb Factor Testing Correction Factor Accuracy Automated Correction Factor Testing Automated Basal Testing Impact On TDD From New Setting Carb2Cal Estimator BG Manager

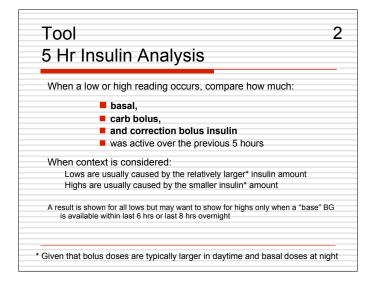


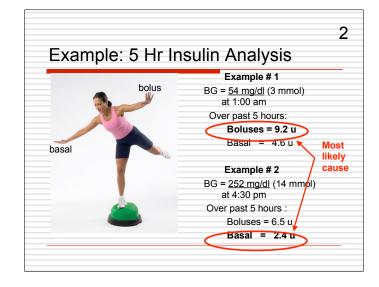

Tool

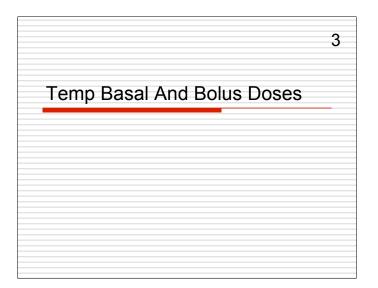

TDD Adjustor For Highs And Lows

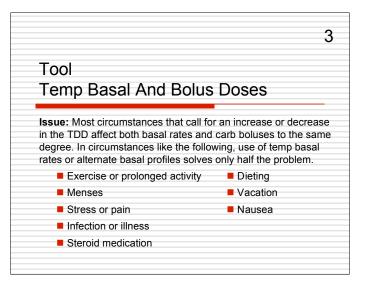

Issue: The average daily TDD is a critical setting to adjust when major control problems occur, but users and clinicians are often confused about when to increase or decrease the TDD to solve control problems

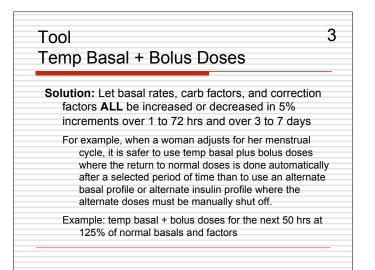




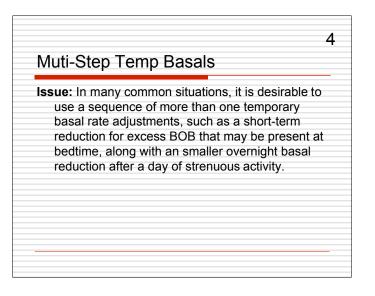


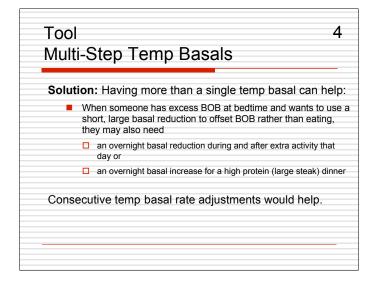


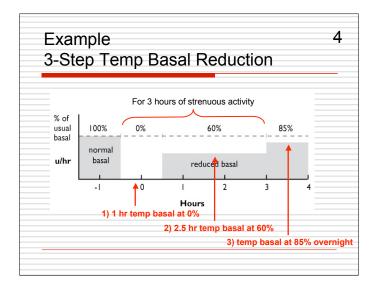


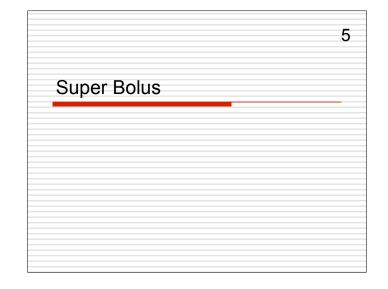


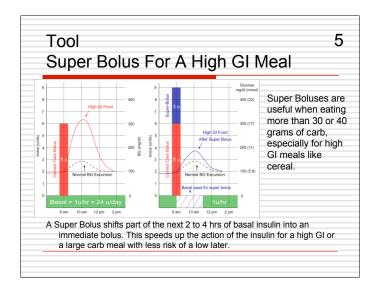
zxam	ole: 5 Hr Insulin Analysis
	4:19 am BG: 53 mg/dl
	In last 5 hours:
	Basal = 4.5 u
	Carb boluses = 0.7 u
	Corr. boluses: = (7.3 u)
	Carbs = 0 grams
	ulin imbalance that causes every high or low glucose
	be this obvious but a 5-hr TrackBack over time make
tinc	ling the cause more obvious

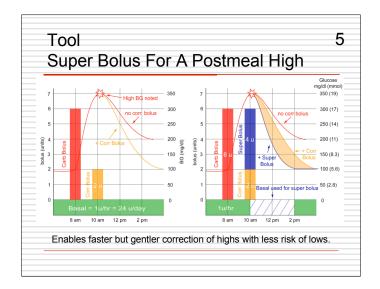




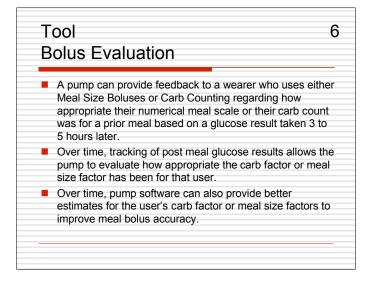


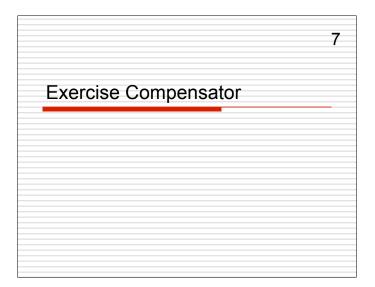


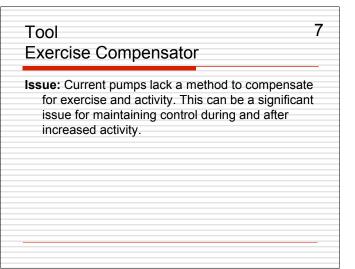




Too Su	bl ber Bolus	5
fa d a E	e: For large carb meals, high GI meals, and aster correction of highs, faster insulin action is esired, but it is difficult to speed up insulin ction without increasing insulin. The Super olus provides a safe way to speed up insulin ction.	
Diabetes P.A., C.E Past-Fut	ished Sept 9, 2004 as slides 43 through 47 in slide presentation "Changes I Care, A History Of Insulin & Pumps – Past, Present, and Future" by John W .E., on the web at <u>http://www.childrenwithdiabetes.com/presentations/DMCa</u> <u>re-0904_files/v3_document.htm</u> and at w.diabetesnet.com/diabetes_technology/DMCare-Past-Future-0904.html.	alsh,




Tool Meal Size Boluses	6
Issue: Pumps currently offer either manual boluses where user determines the bolus need, or carb counting boluses where recommended boluses are automatically adjusted for BOB when a BG is done and carbs counted.	
However, some pump users are unable or unwilling to count carbs, but would still benefit from the accuracy of bolus calculations provided by carb counting, rather than relying on mental calculations or guesstimates.	



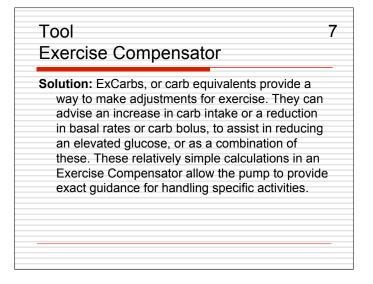
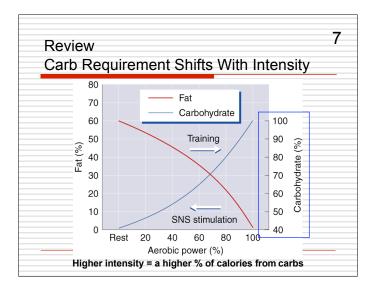
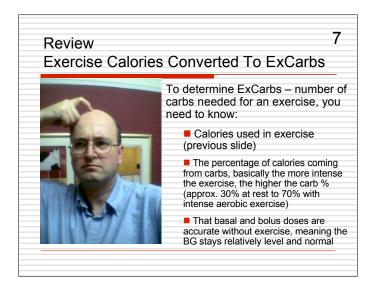
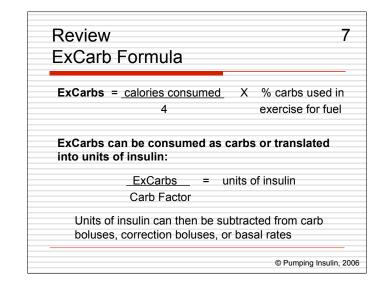
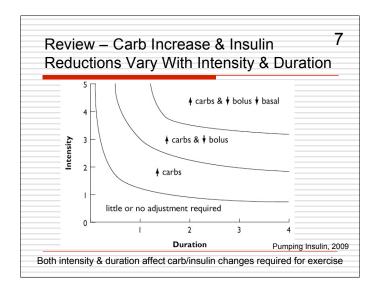

M	eal Size Boluses
So	lution: As an alternative to carb counting while incorporating its benefit for more accurate bolus calculations, a pump can provide a 1 to 7 or other numbered scale* for various meal sizes that are based on an individualized calorie intake for their weight. The meal size approximates the meal's carb content, and allows the bolus to be adjusted for the current BOB.
the	nits of insulin relative to an individual's scale can be determined from ir maximum anticipated bolus size (max. grams of carb for a meal for neone of their weight divided by a carb factor determined by 500/TDD).

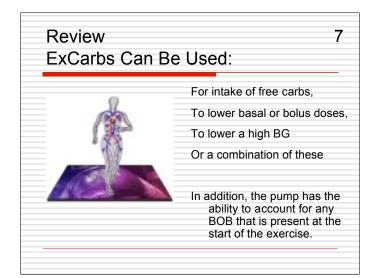

Table e	howe how	bolue dos	ses varv den	ondir	ng on whether BOB is
calc	culated: ca				vs meal size (MS = 1
to 7)	Cu	rrent		New
		Carb	Manual		Meal Sizer
Carbs	70 g	7.0u	7.0u		7.0u (MealSize = 5)
BG	100 mg/dl	0.0u	0.0u		0.0u
BOB	1.7 u	–1.7u	0.0 u		-1.7u
		5.3u	7.0u		5.3u

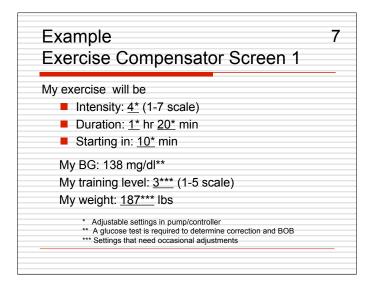












			un	00		1 11	ne	110		And Duration
23.5	ExCar	bs Ne	eded For	Exercise I	Per 100 lb	s. Of We	ight			
			2	Exe 3	cise Intensi 4	ty 5	6	7	Т	his table from Pumping
	۰ 🗆								1	Insulin translates variou
	15	4	9	13	17	21	26	30		
3	~	9	17	26	34	43	51	60		intensities and durations
4	15	13	26	39	51	64	77	90		of aerobic exercise into
e	~	17	34	51	69	86	103	120		
	75	21	43	64 E	86	107	129	150		ExCarbs
(minutes)	90	26	51	77	103	129	154	180	Excarbs	
	55	30	60	90	120	150	180	210		
Duration	20	34	69	103	137	171	206	240	Needed	
ā Is	50	43	86	129	171	214	257	300	•	
18	30	51	103	154	206	257	309	340		
21	10	60	120	180	240	300	360	420		
24	10	69	137	206	274	343	411	480	1	

xample xercise Compensator Screen 2	7
or intensity "4" lasting 1 hr 20 min, starting in 10 m BG = 138, and BOB = 1.45 u, you need:	iin,
Carbs now*: <u>22 g**</u> Carbs after exercise: 20 grams	
Carbs now may be adjusted by user to their preferred inta vith a minimum carb intake set by the pump based on the user's current BOB and BG.	ke,

Example Exercise	e 7 Compensator Screen 3
	now" is selected, the pump determines how basal or bolus doses.
With 22 gran	ns of carb now, your insulin reduction:
	rate: <u>20% x 1 hr, 80% x 2 hrs, 90% overnight*</u> polus: NA
Correc	tion bolus: Accounted for in smaller basal reduction
	* Adjustable settings in pump/controller

Tool

BG Source ID

Tool BG 3	٤ Source ID
Solut	
	values, and INDIRECT values (if present) independently. BG meter would ideally identify and mark (C)ontrol solution readings as well.

Tool BG Source ID

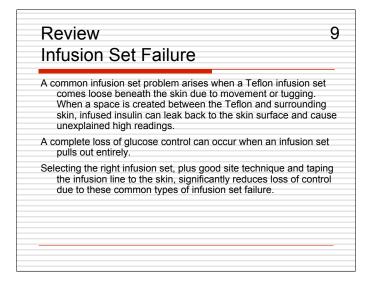
8

Issue: Are the BG values entered into a pump reliable?

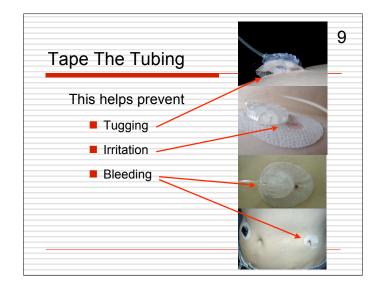
8

Some users may enter "normal" control or made-up readings to improve the BG average in their pump or to make it appear that they test more frequently. Knowing whether glucose readings are real is critical for appropriate clinical care and decisions.

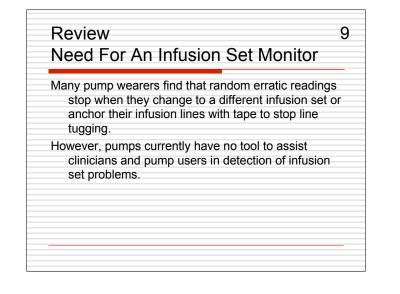
9 Infusion Set Monitor

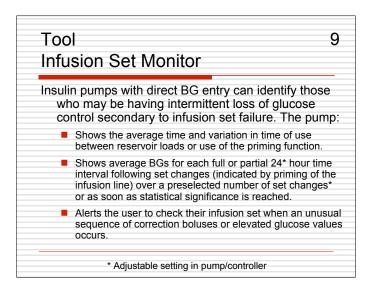

Infusion Set Monitor

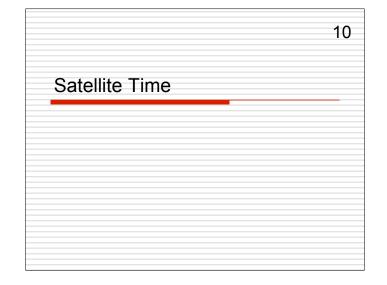
Issue: A significant number of pump wearers encounter infusion set problems, but the source for the random and erratic glucose readings that follow is difficult for users and clinicians to identify. These problems may arise from poor infusion set design, selection of an appropriate set, or inadequate site preparation and maintenance. These problems may be less common in patch pumps, but this is not been verified.

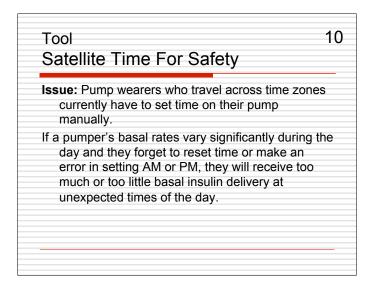

9

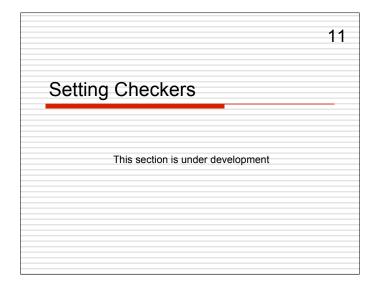
Sol	ution (cont.):
c	nsulin pump manuals and training shall improve overage of specific methods to identify and revent infusion set failure.
t r	uture infusion set designs should incorporate eas o use methods to anchor infusion lines and ninimize tugging of the infusion line near an nfusion site.

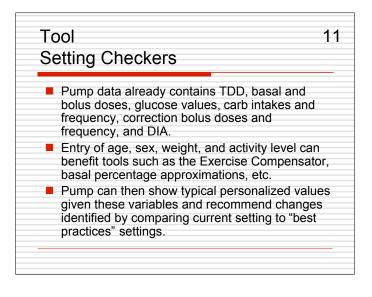

9 Definition of infusion set Monitor Solution: 1. Insulin pumps shall monitor and record in easily accessible history the duration of infusion set usage recorded as mean, median, and SD of time of use. 2. Insulin pumps shall monitor and report average glucose values in full and partial 24 hour* time intervals between set changes with the ability to change the observation interval, such as 1 to 30 set changes.* 3. These steps allow the pump to identify possible infusion set problems from an increase in the average glucose value over time of use and by variations in length of use. * Adjustable setting in pump/controller

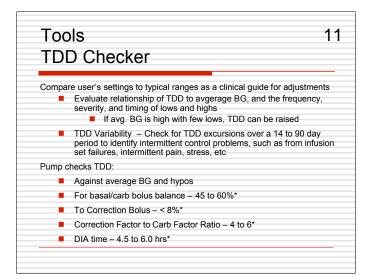


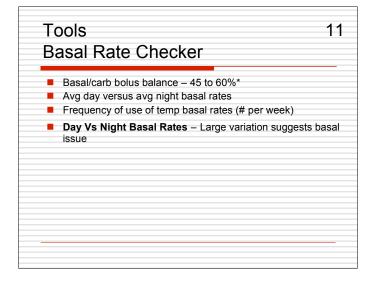




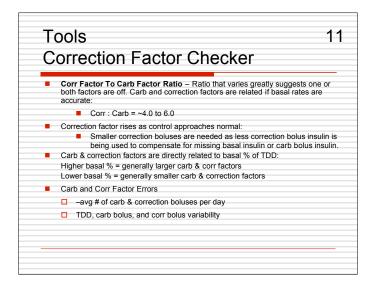


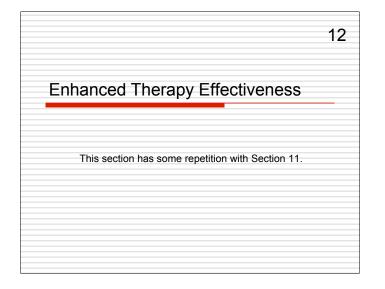


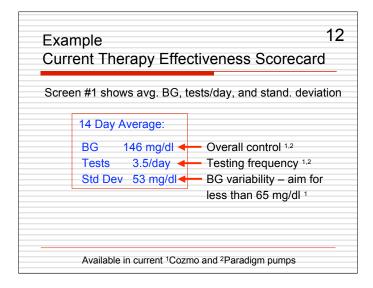


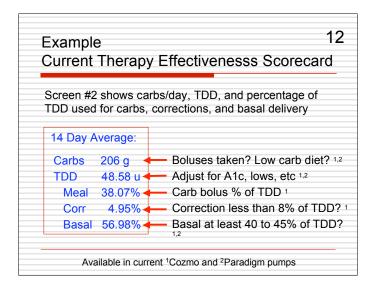


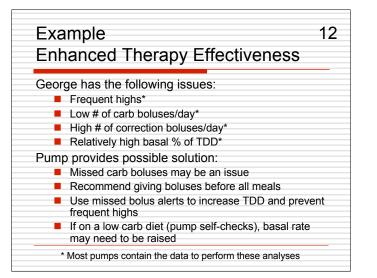
Tool 10 Satellite Time For Safety Solution: Like cell phones and other mobile devices, a pump will automatically correct to a satellite for the correct local time and ask the user whether they wish to adjust their basal rates to the new time. The user may agree or delay this decision until later.

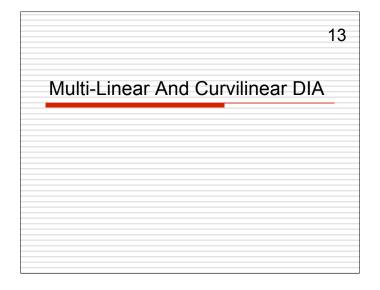


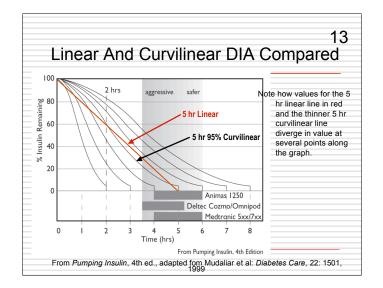


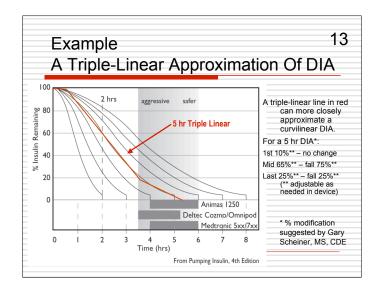

arb Factor Checker
A large variation in carb factorrs during the day suggests a carb counting problem or that basal rates need testing
Corr Factor To Carb Factor Ratio that varies greatly suggests one or bo factors are off. Carb and correction factors are related if basal rates are accurate
Corr : Carb = ~4.5 to 5.0
Carb & correction factors are directly related to basal % of TDD:
Higher basal % = generally larger carb & corr factors
Lower basal % = generally smaller carb & correction factors
Carb and Corr Factor Errors
–avg # of carb & correction boluses per day
Iow carb count for BMI with high BGs
TDD, carb bolus, and corr bolus variability

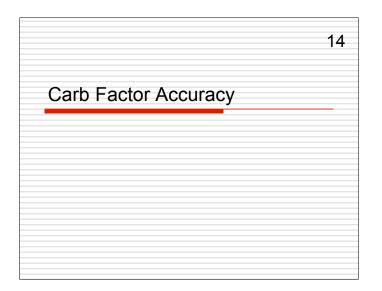


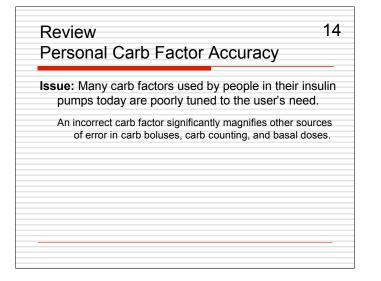

B	olus Monitor
	Basal/carb bolus balance
	Correction bolus percentage
•	Mean, low, and high number of carb and correction boluses per day Along with avg carbs/day, helps identify missed boluses
	What % of boluses are provided though a wizard
	Is smart pump providing maximum utility
•	What % of boluses recommended by wizard are changed by user Do pump settings need to change
	Avg, High, and Low Carbs - Detects diet instability, missed carb boluses
•	Avg, High, and Low Corrections – Alert to control issues, infusion set problems, etc.
•	Excess In Correction Boluses – Helps quantify how much insulin to shift into preventing highs rather than treating them

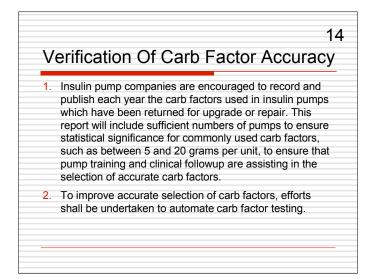


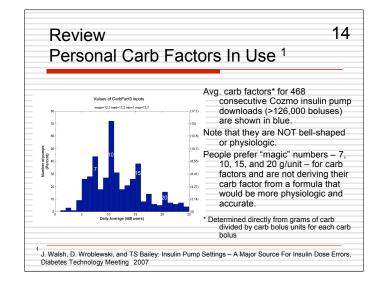

Sam Enha	ple 12 Inced Therapy Effectiveness
Pump	spots issues and suggests typical remedies for:
TDD –	Raise for frequent highs or high A1c
	Lower for frequent lows or for frequent lows and highs
Basal/B	olus Balance – about 50%* of TDD
Correct (mm	on Factor = ~ carb factor X 4.5-5.5* (mg/dl) or carb factor / 4 lol)
	on Bolus % – if over 8%* of TDD, move excess into basals or boluses
	BG – < 160* when checking before & after meals, < 140* n checking mainly before meals
Standar	d Deviation –
Kee	p less than 1/2 of avg BG or below 65 mg/dl*
	* Adjustable settings in pump/controller

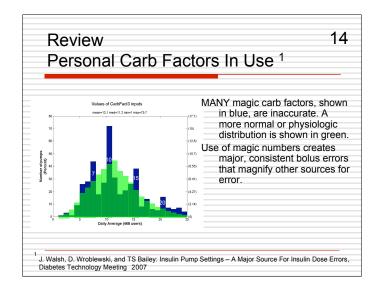


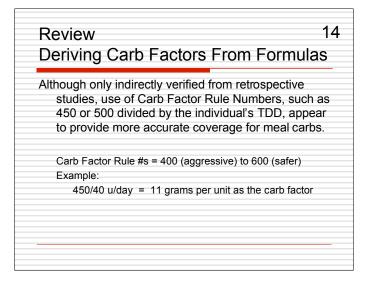


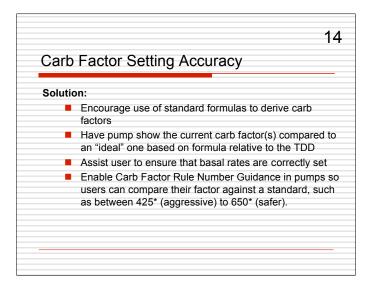

Linear And Curvilinear DIA
Issue: Pump manufacturers use at least 3 different methods (100% curvilinear, 95% of curvilinear, and straight linear) to measure DIA and BOB.
When a realistic DIA time is selected, a linear determination of residual BOB will not be as accurate as a curvilinear method that incorporates the slow onset of insulin action and its longer tailing off in activity. In most situations, an accurate determination of insulin's tailing activity will be most important to the pump user.

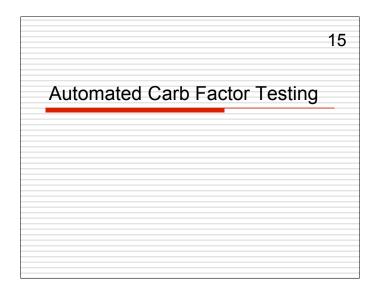

Example A Multi-Linear DIA	13
Use of a multi-linear method to measu improves accuracy. The next page triple-linear example for measureme	shows a

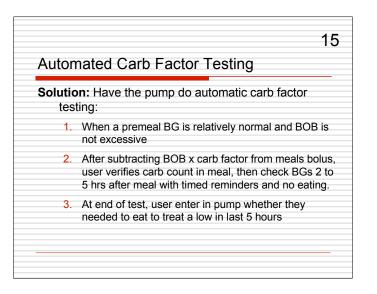


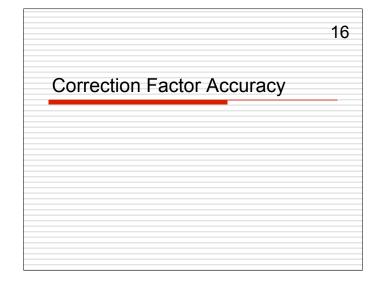

Multi-Linear And Curvilinear DIA	13
Solution: Insulin pumps shall use either a 100% curvilinear or a multi-linear method to improve the accuracy and consistency o BOB estimates.	of

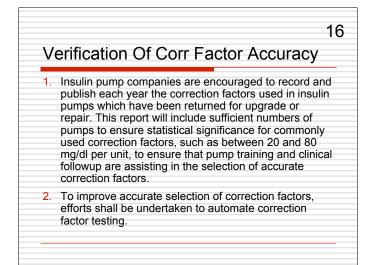


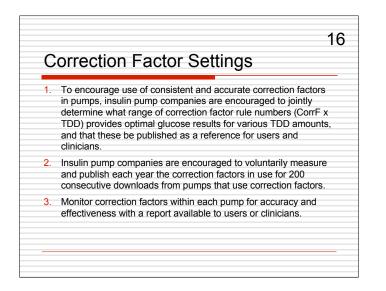


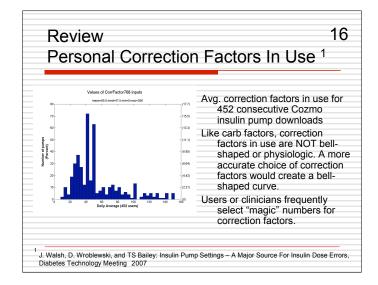




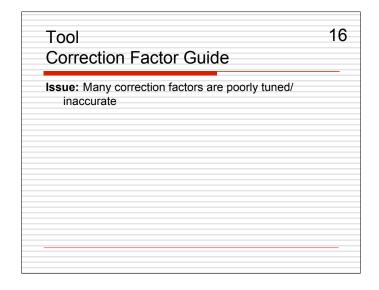

	xample arb Factor	Settings		14
		Octangs		
То	allow the user to o optimal settings ra	ing accurate CarbF compare their currer ange of CarbF Rule pers for various TDD	nt CarbF against an Numbers. Propose	
	Proposed Rule # I	Ranges For Recommend	ling Carb Factors *	
		Carb Factor Rul	e Number Range	
	Avg. TDD	More aggressive	Less aggressive	
	40 u or less	400	500	
	40 to 80 u	425	600	
				1

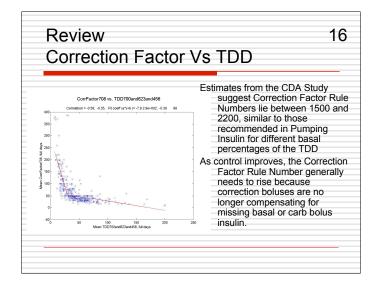


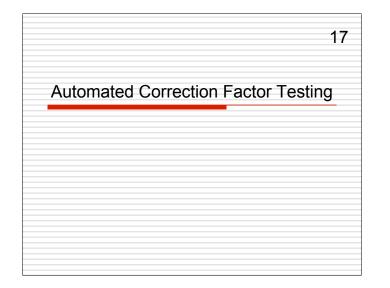

Sue: Many pump users don't test their carb factor(s). This leads to consistent errors in carb boluses that then result in incorrect basal rate adjustments, excess use of correction boluses, or user- adjustments of recommended carb boluses.	
excess use of correction boluses, or user-	
	prrect basal rate adjustments,
adjustments of recommended carb boluses.	
	commended carb boluses.



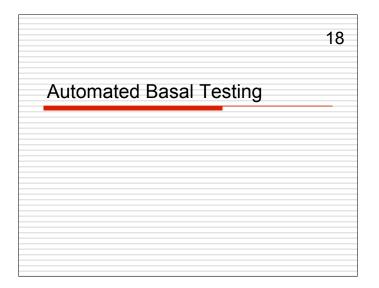
ssue: Many correction factors used by people in their insulin pumps today are poorly tuned to the user's need. An incorrect correction factor significantly magnifies other sources of error in carb boluses and basal rates.	Perso	nal Correction Factors
other sources of error in carb boluses and basal	insuli	
	other	0,0






Rev Deri	iew iving Corr Factors From Formu	16 Ias
stu su TE	ugh only indirectly verified from retrospective udies, use of Correction Factor Rule Numbe ch as 1800 or 2000 divided by the individua DD, appear to provide more accurate covera r lowering high glucose readings.	rs, ľs
	orr Factor Rule #s = 1700 (aggressive) to 2200 (safe ample: 1800/40 u/day = 45 mg/dl per unit as the corr. fac	

	accurate CorrFs, insulir		
	rent CorrF against an op osed CorrF Rule Numbe		CorrF
Broposod Bulk	# Ranges For Recommend	ing Corr Eactors*	1
Froposed Rule		•	
	Correction Factor	Rule Number Range	-
Avg. TDD	More aggressive	Less aggressive	
40 u or less	1700	2000	
40 to 80 u	1800	2200	
	1800	2400	

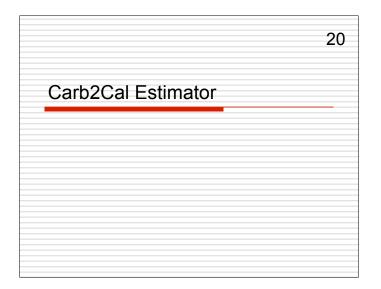

Correction Factor Rule Number mp so user can compare their factor ard using 1700 (aggressive) to 2400
• •
ard using 1700 (aggressive) to 2400
se of standard formulas to derive carb
w their current carb factor(s) compare
one based on formula
ensure that basal rates are correctly set

17
Automated Correction Factor Testing
Issue: Many pump users don't test their correction factor(s). This leads to consistent errors in correction boluses that then result in incorrect basal rate adjustments, or user-adjustments of recommended correction boluses.

Auto	mated Correction Factor Testing
Soluti	on: Do automatic correction factor testing:
1.	When a BG is elevated (over 200 mg/dl), BOB is not excessive, and no carb bolus is planned for the next 5 hours
2.	Have the user give the recommended correction bolus after subtracting any BOB
3.	Alert user to check BG 2, 3.5, and 5 hrs later, or sooner if the fall in glucose appears unusually steep.
4.	After 3 tests, divide the total fall in glucose by the total correction boluses given to derive a preliminary correction factor
5.	Request periodic confirmation tests, especially following a change in basal rates.

Automate	d Basal Tes	ting
This lea result in	ds to consistent errors in calcula on boluses, and	on't test their basal rate(s). errors in basal delivery tha ations for carb boluses and results in suboptimal

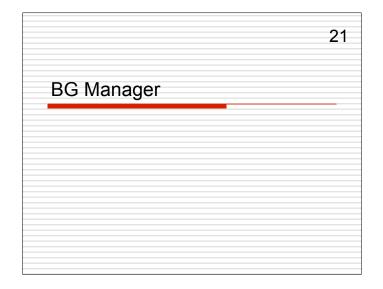
Automated Basal Testing	18
Solution: Do automatic basal rate testing	


	nple mated Basal Testing
Have	the pump do an overnight basal test:
1.	Measure BOB at bedtime (DIA of 5 hrs for calculation) to estimate expected fall in glucose from BOB (BOB times correction factor)
2.	After subtracting BOB x carb factor from bedtime reading, check how flat BG remains overnight with middle of the night BG check or a continuous monitor
3.	In AM, the fall or rise in BG plus difference from target BG divided by correction factor equals basal insulin deficit or excess
4.	Determine if basal rate is correct. If not, recommend change and test again

	19
Impact On TDD From New Setting	

Tool	19
Impact On TDD From N	Iew Setting
Issue: When user changes a cart factor, their basal rates, the du action, or uses a temp basal ra realize how this change affects it will affect their glucose resul	iration of insulin ate, they may not s their TDD nor how

temp/alte setting c taken a e	Vhen a dose setting is adjusted or ernate basal is used, quantify how the hange affects the TDD (units of insulin day) and how the change in insulin dos to change their glucose results.	e
Part of this	check is to relate the new estimated TE er's current average BG	DD


Example Impact On TDD From Carb Factor Chang	19
	ye
A person who averages 190 g of carb/day decides to lower their carb factor from 1u/10g to 1u/9.5g to reduce postmeal highs:	
<u>avg carb/day</u> – <u>avg carb/day</u> = <u>+</u> u/day new carb factor old carb factor	
<u>190 g/day</u> – <u>190 g/day</u> 9.5 g/u 10 g/u (20.0 u/day) – (19.0 u/day) = <u>+ 1 u/day</u>	
+ 1 u/day of carb bolus = ~17 mg/dl lower BG/meal * (correction factor = 50 mg/dl)	
* The effect of a carb factor change on BG can be quantified for typic carb intake for each period of the day.	cal

grams of carb listed in the pump's history screen represents an appropriate carb intake for this person or whether they may be undercounting	sue: Many parents of kids, users, and are unable to tell whether the daily are	
	grams of carb listed in the pump's his represents an appropriate carb intake	story screen e for this
carbs or missing some carb boluses.	carbs or missing some carb boluses.	

Solution: Peo	pple are generally more aware of
	e calorie intakes per day than carb
	onvert avg. grams of carb per day into
•	es per day, assuming that 40% to 50% will be carbs (adapt for low or high
carb diets)	, I e
Avg carbs/day ک	K 10 = calories/day for a 40% carb diet
Avg carbs/day)	K 8 = calories/day for a 50% carb diet

Tools BG Manager	2'
Opportunity: The current HypoManger (pump) or history screen (other pumps expanded beyond treatment of highs provide information on their causes ar adjustments to make to improve contr) can be and lows to nd

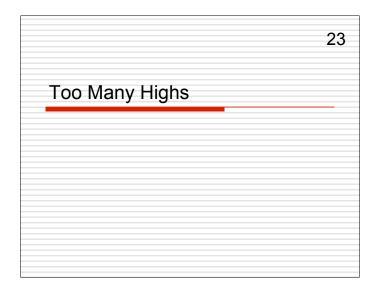
Rev Hyp	iew 21 oManager
	nt Cozmo HypoManager shows current insulin OR rb deficit. This feature:
•	Corrects high readings (similar to other pumps)
•	Recommends a carb intake that is appropriate for that situation to help reduce overeating when BG is low
•	Warns when carbs may be needed later even though current BG is OK or high (The poor man's continuous monitor)
	works – BOB is compared to correction bolus ed:
•	When BOB is smaller -> pump recommends a correction bolus
_	When BOB is larger -> pump recommends eating carbs

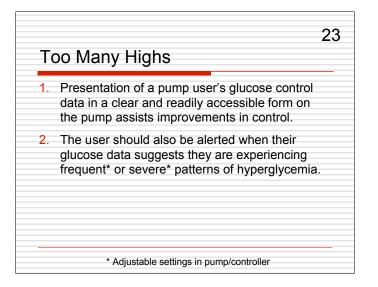
	Aanager
	l Glucose Manager: ands the HypoManager concept
Like	the HypoManager, identifies corrective action ded now or later for excess or inadequate BOB
Also	serves as a learning tool:
•	When BG goes high, it estimates the excess in uncovered carbs that created the high
-	When BG goes low, it estimates the insulin excess that created the low

Tool 2 BG Manager For Highs	21
For a high glucose, pump suggests:	
"Take u now ? In the last 5 hrs, you needed an extra u * or g fewer carbs."	
or for a high BG after a meal when enough BOB is presen "Your bolus dose appears adequate (enough BOB), did you bolus early enough?" * carb bolus or basal insulin (after accounting for BOB)	Ľ
	_

BG	Tool 2' BG Manager For Lows 2' For a low glucose, pump suggests:		21
	"Eat grams now. In the last 5 hrs, you had aboutu excess insulin*." carb bolus or basal insulin (after accounting for BOB)		

lew Pump Alerts	
22. Too Many Lows	
23. Too Many Highs	
24. Too Many Lows And Highs	
25. Excess Correction Boluses Aler	
26. Insulin Stacking Alert	
27. Meal Delay Reminder	
28. Bolus Override Monitor	
29. Unusual Highs	

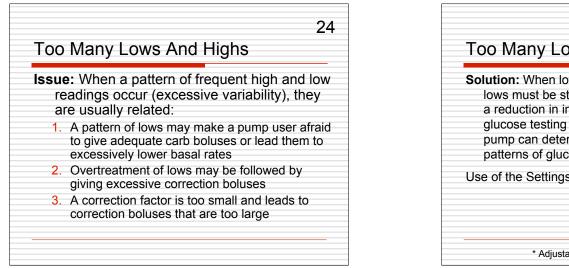

Т	22 Do Many Lows
1.	Presentation of a pump user's glucose control data in a clear and readily accessible form on the pump assists improvements in control.
2.	The user should also be alerted when their glucose data suggests they are experiencing frequent* or severe* patterns of hypoglycemia.
	* Adjustable settings in pump/controller


22 Too Many Lows Or Highs Issue: Although most current insulin pumps contain sufficient data to determine when a user is experiencing patterns of frequent or severe low or high readings, no presentation of glucose patterns is offered and no warning is given when dangerous patterns appear.

npr	np Screen Hy	ndersta	nding of	the seve	rity and f	requency
	lucose events over time (v the following:	veeks), t	he pump	can pro	vide a sc	reen
	Weekly History – L	ow BG	s			
	# of weeks	1	2	4	8	
	# BGs/week	23	25	28	32	
		22%	18%	11%	8%	
	% BGs/week < 50 mg/dl*					

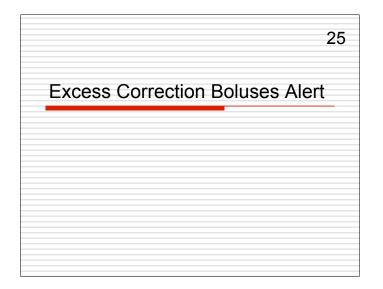
ample mp Screen Hy	/pog	lycen	nia C)ispla	22 ay 2
aily timing for severity and creen such as the following					own
Low BGs By Time C	of Day	F	or <u>1</u> W	eek*	
Avg BGs for <u>1</u> week		23 (3.3	3/day)		
Time Period	4a-10a	10a-4p	4a-10p	10p-4a	
# and % BGs < 50 mg/dl*	4 (57%)	1 (14%)	0 (0%)	0 (0%)	
# and % BGs < 70 mg/dl*	5 (71%)	2 (28%)	0 (0%)	1 (14%)	
* Modified to % disp	olay per Gar	y Scheiner,	MS, CDE		
 * Adjustable s	ettings ir	n pump/c	ontroller		

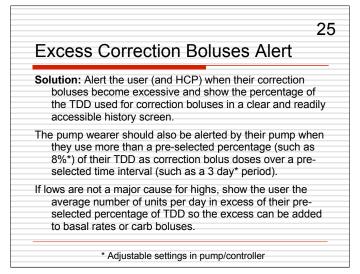
22 Too Many Lows Alert
 Solution: Depending on the settings selected by the user and clinician, an alert would sound when a pattern of hypoglycemia events exceeds a preselected threshold for frequency* or severity* of hypoglycemia. Additionally, typical ways to resolve particular glucose patterns occurring at this time can be viewed.
* Adjustable settings in pump/controller



	ample np Screen H	yper	glyce	mia	Disp	23 lay 1
and f	prove statistics for a requency of high gluc can provide a scree	cose eve	ents over	r time (v	veeks),	
	Weekly History – H	ligh BG	s			
	# of weeks	1	2	4	8	
	Avg BGs/week	23	25	28	32	
	% BGs/wk > 180 mg/dl*	26%	30%	29%	26%	
	% BGs/wk >220 mg/dl*	17%	18%	22%	23%	
	* Modified to % dis	splay per Ga	Iry Scheiner	, MS, CDE	1	1
	* Adjustable s	settings i	n pump/o	controlle	r	

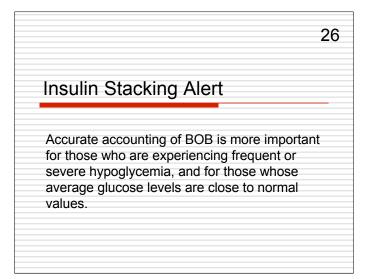
daily timing for severity and screen such as the following	frequenc			-
Low BGs By Time O	f Day	Fo	r_ <u>4</u> We	eks*
# BGs for <u>4</u> weeks		112 (4	.0/day)	
Time Period	4a-10a	10a-4p	4a-10p	10p-4a
# and % BGs > 180 mg/dl*	1 (1%)	3 (3%)	4 (4%)	22 (21%)
# and % BGs > 220 mg/dl*	0 (0%)	2 (2%)	3 (3%)	18%
* Modified to % disp	lay per Gar	y Scheiner,	MS, CDE	


23 Too Many Highs	
 Solution: Depending on the settings selected by the user and clinician, an alert would sound when a pattern of hyperglycemia events exceeds a preselected threshold for frequency* or severity* of hyperglycemia. Additionally, typical ways to resolve particular glucose patterns occurring at this time can be viewed. 	
* Adjustable settings in pump/controller	



lows must be s a reduction in glucose testing pump can dete	ows and highs are frequent, the stopped first. This usually requires insulin doses. With sufficient g (4 or more tests per day), the ermine likely causes for various cose variability.
Jse of the Setting	s Checked can be helpful here.

Example Too Many Lows And Highs	24
,	
* Adjustable settings in pump/controller	

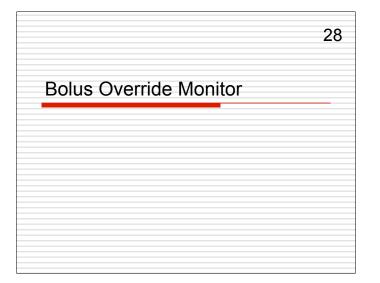


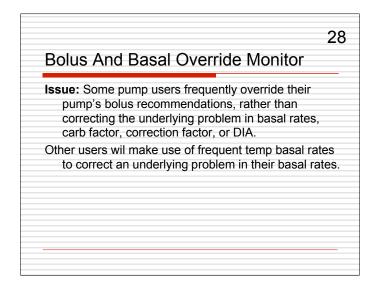
ssue: When glucose leve	Is consistently run high,
	ess the problem by giving
	uses rather than correcting
the core problem throug	-
basal rates or carb bolu	ISES.
f the correction bolus % b	ecomes excessive relative
to the TDD, a pump ofte	en does not show this
information, and no ale	rt is given regarding the
possible excessive use	of correction boluses.

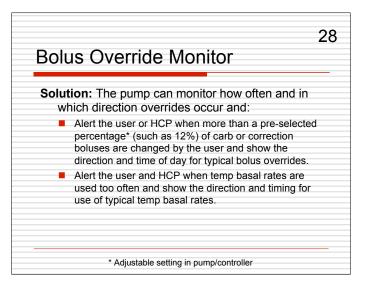
Exce	2 ss Correction Boluses Alert
	orrection boluses become excessive and lows T a problem:
	ove at least half of any excess units above 8%* basal rates or carb boluses
	Raise the basal rates
	Lower the carb factor
	Or stop skipping carb boluses – A comparison of the average number of carbs eaten per day and the average number of carb boluses per day can help detect bolus skipping
	* Adjustable setting in pump/controller

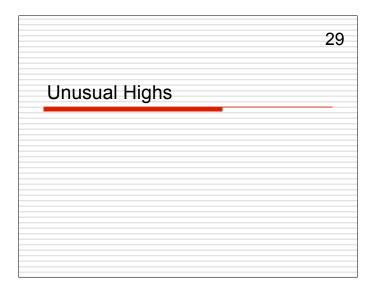
Example Correctior	Boluse	es Over	25 8%*
	10 Day A Carbs TDD Meal Corr Basal	175 g 54.1 u 36% 21% ←	54 yo, 184 lb. male with Type 1 DM and rare hypoglycemia Over 8%*
■ 21% of 5 ■ 11.3 u -	54.1 = 11.3 u 4.3 u = 7 un 2 of 7 u = 2.	units, 8% of s its excess	s or carb boluses: 54.1 = 4.3 units add to basals or carb boluses mp/controller

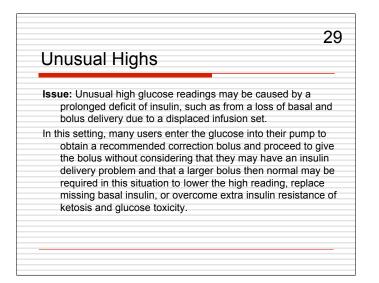
In	sulin Stacking Alert	26
	en a pump user plans to give a bolus but no glucose value has been entered in the pump, current insulin stacking* is ignored by the pum and no warning is given. If they were made av of the insulin stacking, they might significantly the bolus they would otherwise give. e insulin stacking alert would be turned on by default once a DIA time is selected, but may b turned off if the user desires.	vare alter
to	uch as when the BOB is greater than 1.25%** of the avg. TDD, su change the glucose about 25 mg/dl. (** Adjustable setting in mp/controller for a certain fall in glucose selected by the user or cli	


26 Insulin Stacking Alert Issue: Pump users often bolus for carbs without checking their glucose first. With no glucose reading, current pumps do not account for BOB, nor warn that a significant quantity of BOB is present when a bolus is planned. Though no glucose test is done, BOB data in the pump can be used to warn the user that there is sufficient insulin stacking to substantially change their planned bolus dose.


Example Insulin Stacking or BOB Alert	26
When a carb bolus is planned without a recent BG check, but BOB is more than 1.25%* of the average TDD (enough to cause about a 25 mg/dl drop in the glucose), the pump will recommend that the wearer do a BG check due to the substantial presence of BOB.	
For instance, for someone with:	
Avg TDD 1.25%* of TDD	
40 units 0.5 units	
50 mg/dl per u (corr factor) X 0.5 u = 25 mg/dl	
This individual would be alerted when they do not check their glucose and want to give a bolus but have 0.5 u or more of BOB present.	
* Adjustable in pump/controller to provide a reasonable degree of safe	ety




27 Meal Delay Reminder Issue: When the glucose is high at mealtime and eating can be delayed, a pump user may want to take a combined carb and correction bolus, and then delay eating until the glucose comes down to a more desired level. However, they do not want to delay too long and experience hypoglycemia.


2 Meal Delay Reminder		
Solution: Provide a simple timer that is activa when a high premeal glucose occurs, and alarms after a chosen time period to recher the glucose prior to eating.		

	isual Highs	High Alert w	arns that a larger
th of	an normal correc	tion bolus ma ery, possible	be needed for los presence of ketosis
The u	•	erted that the	ir infusion set shou